Skip to main content
Log in

Condensation process of alcohol molecules on mesoporous silica MCM-41 and SBA-15 and fumed silica: a spin-probe ESR study

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

A few alcoholic solutions of di-tert-butyl nitroxide (DTBN), a spin probe, at a high concentration were condensed on several silica materials, such as MCM-41, two types of SBA-15, and fumed silica, at various amounts in vacuum. At a very low solution dose the electron spin resonance (ESR) spectrum is that of an immobilized nitroxide radical. With increasing solution dose, the spectrum is gradually sharpened and a well-separated three-line spectrum is observed at the dose that is estimated to fill the surface with a monomolecular layer. Thus, the DTBN molecule can make rapid tumbling motion on this solvent layer. With a further increase in the solution dose the ESR spectrum is modified in different ways from system to system: the line width increases approximately linearly with respect to the solution dose for the SBA-15 and fumed silica systems, but it remains almost constant for the MCM-41 system until the solution dose exceeds the total volume of a nanochannel. The line width increase with respect to the solution dose is small for the SBA-15 system but large for the fumed silica system. These results have been interpreted geometrically with the structures of these silica materials and a condensation model for the alcohols on these surfaces. In relation to the present results, a model of the collective molecular flow of the alcohol solutions through the nanochannel of MCM-41 is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., Beck, J.S.: Nature 359, 710–712 (1992)

    Article  ADS  Google Scholar 

  2. Yanagisawa, T., Shimizu, T., Kuroda, K., Kato, C.: Bull. Chem. Soc. Jpn. 63, 988–992 (1990)

    Article  Google Scholar 

  3. Zhao, X.S., Lu, G.Q., Millar, G.J.: Ind. Eng. Chem. Res. 35, 2075–2090 (1996)

    Article  Google Scholar 

  4. Coma, A.: Chem. Rev. 97, 2373–2419 (1997)

    Article  Google Scholar 

  5. Morishige, K., Nobuoka, K.: J. Chem. Phys. 107, 6965–6969 (1997)

    Article  ADS  Google Scholar 

  6. Stallmach, F., Gräser, A., Kärger, J., Krause, C., Jeschke, M., Oberhagemann, U., Spange, S.: Micoporous Mesoporous Matter 44–45, 745–753 (2001)

    Article  Google Scholar 

  7. Takahara, S., Sumiyama, N., Kittaka, S., Yamaguchi, T., Bellissent-Funel, M.C.: J. Phys. Chem. B 109, 11231–11239 (2005)

    Article  Google Scholar 

  8. Anandan, S., Okazaki, M.: Micoporous Mesoporous Matter 87, 77–92 (2005)

    Article  Google Scholar 

  9. Okazaki, M., Konishi, Y., Toriyama, K.: Chem. Phys. Lett. 328, 251–256 (2000)

    Article  ADS  Google Scholar 

  10. Konishi, Y., Okazaki, M., Toriyama, K.: J. Phys. Chem. B 105, 9101–9106 (2001)

    Article  Google Scholar 

  11. Okazaki, M., Toriyama, K., Oda, T., Kasai, T.: Phys. Chem. Chem. Phys. 4, 1201–1205 (2002)

    Article  Google Scholar 

  12. Okazaki, M., Toriyama, K., Sawaguchi, N., Oda, T.: Appl. Magn. Reson. 23, 435–444 (2003)

    Article  Google Scholar 

  13. Okazaki, M., Toriyama, K.: J. Phys. Chem. C 111, 9122–9129 (2007)

    Article  Google Scholar 

  14. Okazaki, M., Iwamoto, S., Sueishi, Y., Toriyama, K.: J. Phys. Chem. C 112, 768–775 (2008)

    Article  Google Scholar 

  15. Berliner, L.J. (ed.): Spin Labeling. Academic Press, New York (1976)

    Google Scholar 

  16. Likhtenshtein, G.I.: Spin Labelling Methods in Molecular Biology. Wiley, New York (1976)

    Google Scholar 

  17. Majumder, M., Chopra, N., Andrews, R., Hinds, B.J.: Nature 438, 44 (2005)

    Article  ADS  Google Scholar 

  18. Holt, J.K., Park, H.G., Wang, Y., Stadermann, M., Artyukhin, A.B., Grigoropoulos, C.P., Noy, A., Bakajin, O.: Science 312, 1034–1037 (2006)

    Article  ADS  Google Scholar 

  19. Burkett, S.L., Sims, S.D., Mann, S.: Chem. Commun. 1996, 1367 (1996)

    Article  Google Scholar 

  20. Fulvio, P.F., Pikus, S., Jaroniec, M.: J. Matter Chem. 15, 5049–5053 (2005)

    Article  Google Scholar 

  21. Stoll, S., Schweiger, A.: J. Magn. Reson., 178, 42–55 (2006)

    Article  ADS  Google Scholar 

  22. Schneider, D.J., Freed, J.H., in: Berliner, L.J., Renben, J. (eds.) Spin Labeling. Biological Magnetic Resonance, vol. 8, pp. 1–76. Plenum, New York (1989)

    Google Scholar 

  23. Okazaki, M., Toriyama, K.: J. Phys. Chem. B 107, 7654–7658 (2003)

    Article  Google Scholar 

  24. Zhao, X.S., Lu, G.O., Whittaker, A.K., Millar, G.J.: Zhu, H.Y.: J. Phys. Chem. B 101, 6525–6531 (1997)

    Article  Google Scholar 

  25. Berner, B., Kivelson, D.: J. Phys. Chem. 83, 1406–1412 (1979)

    Article  Google Scholar 

  26. Tauer, K.J., Lipscomb, W.N.: Acta Crystallogr. 5, 606–612 (1952)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaharu Okazaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okazaki, M., Seelan, S. & Toriyama, K. Condensation process of alcohol molecules on mesoporous silica MCM-41 and SBA-15 and fumed silica: a spin-probe ESR study. Appl Magn Reson 35, 363–378 (2009). https://doi.org/10.1007/s00723-009-0168-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-009-0168-2

Keywords

Navigation