Skip to main content
Log in

The Electronic State of Flavoproteins: Investigations with Proton Electron–Nuclear Double Resonance

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Electron–nuclear double resonance (ENDOR) spectroscopy provides useful information on hyperfine interactions between nuclear magnetic moments and the magnetic moment of an unpaired electron spin. Because the hyperfine coupling constant reacts quite sensitively to polarity changes in the direct vicinity of the nucleus under consideration, ENDOR spectroscopy can be favorably used for the detection of subtle protein–cofactor interactions. A number of pulsed ENDOR studies on flavoproteins have been published during the past few years; most of them were designed to characterize the flavin cofactor by means of its protonation state, or to detect individual protein–cofactor interactions. The aim of this study is to compare the pulsed ENDOR spectra from different flavoproteins in terms of variations of characteristic proton hyperfine values. The general concept is to observe limits of possible influences on the cofactor’s electronic state by surrounding amino acids. Furthermore, we compare ENDOR data obtained from in vivo experiments with in vitro data to emphasize the potential of the method for gaining molecular information in complex media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. V. Massey, Biochem. Soc. Trans. 28, 283–296 (2000)

    Article  Google Scholar 

  2. D.E. Edmondson, Biochem. Soc. Trans. 13, 593–600 (1985)

    Google Scholar 

  3. C.W.M. Kay, S. Weber, in Electron Paramagnetic Resonance, ed. by B.C. Gilbert, M.J. Davies, D.M. Murphy (Royal Society of Chemistry, Cambridge, UK, 2002), pp. 222–253

  4. D.M. Murphy, R.D. Farley, Chem. Soc. Rev. 35, 249–268 (2006)

    Article  Google Scholar 

  5. S. van Doorslaer, E. Vinck, Phys. Chem. Chem. Phys. 9, 4620–4638 (2007)

    Article  Google Scholar 

  6. R. Bittl, C.W.M. Kay, S. Weber, P. Hegemann, Biochemistry 42, 8506–8512 (2003)

    Article  Google Scholar 

  7. S. Weber, C.W.M. Kay, A. Bacher, G. Richter, R. Bittl, ChemPhysChem 6, 292–299 (2005)

    Article  Google Scholar 

  8. B. Barquera, L. Ramirez-Silva, J.E. Morgan, M.J. Nilges, J. Biol. Chem. 281, 36482–36491 (2006)

    Article  Google Scholar 

  9. C.W.M. Kay, H. El Mkami, G. Molla, L. Pollegioni, R.R. Ramsay, J. Am. Chem. Soc. 129, 16091–16097 (2007)

    Google Scholar 

  10. A. Okafuji, A. Schnegg, E. Schleicher, K. Möbius, S. Weber, J. Phys. Chem. B 112, 3568–3574 (2008)

    Article  Google Scholar 

  11. H. Nagai, Y. Fukushima, K. Okajima, M. Ikeuchi, H. Mino, Biochemistry 47, 12574–12582 (2008)

    Article  Google Scholar 

  12. R. Banerjee, E. Schleicher, S. Meier, R. Muñoz Viana, R. Pokorny, M. Ahmad, R. Bittl, A. Batschauer, J. Biol. Chem. 282, 14916–14922 (2007)

    Article  Google Scholar 

  13. N. Hoang, E. Schleicher, S. Kacprzak, J.-P. Bouly, M. Picot, W. Wu, A. Berndt, E. Wolf, R. Bittl, M. Ahmad, PLoS Biol. 6, e160.1559–e160.1569 (2008)

    Google Scholar 

  14. M. Medina, R. Cammack, Appl. Magn. Reson. 31, 457–470 (2007)

    Article  Google Scholar 

  15. D. Goldfarb, D. Arieli, Annu. Rev. Biophys. Biomol. Struct. 33, 441–468 (2004)

    Article  Google Scholar 

  16. D. Goldfarb, Phys. Chem. Chem. Phys. 8, 2325–2343 (2006)

    Article  MathSciNet  Google Scholar 

  17. N. Bretz, N. Henzel, H. Kurreck, F. Müller, Isr. J. Chem. 29, 49–55 (1989)

    Google Scholar 

  18. H. Kurreck, M. Bock, N. Bretz, M. Elsner, H. Kraus, W. Lubitz, F. Müller, J. Geissler, P.M.H. Kroneck, J. Am. Chem. Soc. 106, 737–746 (1984)

    Article  Google Scholar 

  19. H. Kurreck, N.H. Bretz, N. Helle, N. Henzel, E. Weilbacher, J. Chem. Soc. Faraday Trans. 1 84, 3293–3306 (1988)

    Article  Google Scholar 

  20. J.-P. Bouly, E. Schleicher, M. Dionisio-Sese, F. Vandenbussche, M. Ahmad, R. Bittl, P. Galland, A. Batschauer, S. Meier, N. Bakrim, D. Van der Straeten, J. Biol. Chem. 282, 9383–9391 (2007)

    Article  Google Scholar 

  21. T. Klar, G. Kaiser, U. Hennecke, T. Carell, A. Batschauer, L.-O. Essen, Chem. Biol. Chem. 7, 1798–1806 (2006)

    Google Scholar 

  22. K. Hitomi, S.-T. Kim, S. Iwai, N. Harima, E. Otoshi, M. Ikenaga, T. Todo, J. Biol. Chem. 272, 32591–32598 (1997)

    Article  Google Scholar 

  23. R. Brudler, K. Hitomi, H. Daiyasu, H. Toh, K.-i. Kucho, M. Ishiura, M. Kanehisa, V.A. Roberts, T. Todo, J.A. Tainer, E.D. Getzoff, Mol. Cell 11, 59–67 (2003)

    Article  Google Scholar 

  24. O. Kleiner, J. Butenandt, T. Carell, A. Batschauer, Eur. J. Biochem. 264, 161–167 (1999)

    Article  Google Scholar 

  25. S. Stoll, A. Schweiger, J. Magn. Reson. 178, 42–55 (2006)

    Article  ADS  Google Scholar 

  26. E. Schleicher, K. Hitomi, C.W.M. Kay, E.D. Getzoff, T. Todo, S. Weber, J. Biol. Chem. 282, 4738–4747 (2007)

    Article  Google Scholar 

  27. S. Weber, K. Möbius, G. Richter, C.W.M. Kay, J. Am. Chem. Soc. 123, 3790–3798 (2001)

    Article  Google Scholar 

  28. C.W.M. Kay, R. Feicht, K. Schulz, P. Sadewater, A. Sancar, A. Bacher, K. Möbius, G. Richter, S. Weber, Biochemistry 38, 16740–16748 (1999)

    Article  Google Scholar 

  29. C. Heller, H.M. McConnell, J. Chem. Phys. 32, 1535–1539 (1960)

    Article  ADS  Google Scholar 

  30. A. Carrington, A.D. McLachlan, Introduction to Magnetic Resonance (Harper & Row, New York, 1967)

    Google Scholar 

  31. E.W. Stone, A.H. Maki, J. Chem. Phys. 37, 1326–1333 (1962)

    Article  ADS  Google Scholar 

  32. E.L. Fasanella, W. Gordy, Proc. Natl. Acad. Sci. USA 62, 299–304 (1969)

    Article  ADS  Google Scholar 

  33. S. Weber, G. Richter, E. Schleicher, A. Bacher, K. Möbius, C.W.M. Kay, Biophys. J. 81, 1195–1204 (2001)

    Article  Google Scholar 

  34. C.W.M. Kay, E. Schleicher, K. Hitomi, T. Todo, R. Bittl, S. Weber, Magn. Reson. Chem. 43, S96–S102 (2005)

    Article  Google Scholar 

  35. I. Çinkaya, W. Buckel, M. Medina, C. Gómez-Moreno, R. Cammack, Biol. Chem. 378, 843–849 (1997)

    Article  Google Scholar 

  36. M. Medina, A. Lostao, J. Sancho, C. Gómez-Moreno, R. Cammack, P.J. Alonso, J.I. Martínez, Biophys. J. 77, 1712–1720 (1999)

    Article  Google Scholar 

  37. B. Barquera, J.E. Morgan, D. Lukoyanov, C.P. Scholes, R.B. Gennis, M.J. Nilges, J. Am. Chem. Soc. 125, 265–275 (2003)

    Article  Google Scholar 

  38. J.I. García, M. Medina, J. Sancho, P.J. Alonso, C. Gómez-Moreno, J.A. Mayoral, J.I. Martínez, J. Phys. Chem. A 106, 4729–4735 (2002)

    Article  Google Scholar 

  39. M.J. Maul, T.R.M. Barends, A.F. Glas, M.J. Cryle, T. Domratcheva, S. Schneider, I. Schlichting, T. Carell, Angew. Chem. Int. Ed. 47, 10076–10080 (2008)

    Article  Google Scholar 

  40. C.P. Selby, A. Sancar, Proc. Natl. Acad. Sci. USA 103, 17696–17700 (2006)

    Article  ADS  Google Scholar 

  41. R. Pokorny, T. Klar, U. Hennecke, T. Carell, A. Batschauer, L.-O. Essen, Proc. Natl. Acad. Sci. USA 105, 21023–21027 (2008)

    Article  ADS  Google Scholar 

  42. S. Kanai, R. Kikuno, H. Toh, H. Ryo, T. Todo, J. Mol. Evol. 45, 535–548 (1997)

    Article  Google Scholar 

  43. H. Komori, R. Masui, S. Kuramitsu, S. Yokoyama, T. Shibata, Y. Inoue, K. Miki, Proc. Natl. Acad. Sci. USA 98, 13560–13565 (2001)

    Article  ADS  Google Scholar 

  44. M. Ahmad, A.R. Cashmore, Nature 366, 162–166 (1993)

    Article  ADS  Google Scholar 

  45. C.A. Brautigam, B.S. Smith, Z. Ma, M. Palnitkar, D.R. Tomchick, M. Machius, J. Deisenhofer, Proc. Natl. Acad. Sci. USA 101, 12142–12147 (2004)

    Article  ADS  Google Scholar 

  46. T. Kottke, A. Batschauer, M. Ahmad, J. Heberle, Biochemistry 45, 2472–2479 (2006)

    Article  Google Scholar 

  47. C. Lin, D.E. Robertson, M. Ahmad, A.A. Raibekas, M.S. Jorns, P.L. Dutton, A.R. Cashmore, Science 269, 968–970 (1995)

    Article  ADS  Google Scholar 

  48. W. Watt, A. Tulinsky, R.P. Swenson, K.D. Watenpaugh, J. Mol. Biol. 218, 195–208 (1991)

    Article  Google Scholar 

  49. A. Berndt, T. Kottke, H. Breitkreuz, R. Dvorsky, S. Hennig, M. Alexander, E. Wolf, J. Biol. Chem. 282, 13011–13021 (2007)

    Article  Google Scholar 

  50. M. Medina, C. Gomez-Moreno, R. Cammack, Eur. J. Biochem. 227, 529–536 (1995)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (SFB-498, projects A2 and B7, and the Research Group “Blue light photoreceptors”, FOR-526). We thank Prof. Stephen G. Mayhew and Dr. Mary Gallagher (both University College Dublin, Ireland) for providing us with Desulfovibrio vulgaris flavodoxin. It is a pleasure to thank Dr. Chris Kay (University College of London) for assistance during the initial experiments and for helpful discussions. We thank Gebhard Kaiser and Tobias Klar for AtCry1 and TtCPDPL protein preparations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Weber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schleicher, E., Wenzel, R., Ahmad, M. et al. The Electronic State of Flavoproteins: Investigations with Proton Electron–Nuclear Double Resonance. Appl Magn Reson 37, 339–352 (2010). https://doi.org/10.1007/s00723-009-0101-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-009-0101-8

Keywords

Navigation