Applied Magnetic Resonance

, 37:595 | Cite as

Multi-Frequency EPR and DC Conductivity of Itinerant Spins in Single-Wall Carbon Nanotubes

  • Klaus-Peter Dinse
  • Johan van Tol
  • Andrew Ozarowski
  • Björn Corzilius


Sealed, deoxygenated single-wall carbon nanotubes show two characteristic electron paramagnetic resonance (EPR) signals at g = 2.07 and g = 2.00 in the temperature range from 300 to 50 K. Reversible interconversion between both components was observed. The large g-shift and the temperature dependence of the EPR susceptibility of the g = 2.07 signal indicate that this signal can be attributed to itinerant spins. At low temperatures only the g = 2.00 signal remained, which could be further characterized using microwave frequencies up to 320 GHz. The direct current conductivity of a partially aligned sample was also measured. The room temperature value was estimated as 0.7 (Ωcm)−1. The observed temperature dependence can be described by assuming temperature-activated hopping in a small-gap semiconductor with an activation energy of 3.5 meV, similar to the characteristics of the previously measured 9.4 GHz microwave conductivity.


Electron Paramagnetic Resonance Electron Paramagnetic Resonance Spectrum Electron Paramagnetic Resonance Experiment Itinerant Electron Electron Paramagnetic Resonance Signal Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to K. Hata (National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan), who provided us with SWNT samples. Financial support of the Deutsche Forschungsgemeinschaft is gratefully acknowledged. The National High Magnetic Field Laboratory (NHMFL) is operated by the National Science Foundation (DMR-08). Experiments at the NHFML (Tallahassee) were supported by a visiting professor fellowship to K.P.D.


  1. 1.
    P. Petit, E. Jouguelet, J.E. Fischer, A.G. Rinzler, R.E. Smalley, Phys. Rev. B 56, 9275 (1997)CrossRefADSGoogle Scholar
  2. 2.
    A.S. Claye, N.M. Nemes, A. Janossy, J.E. Fischer, Phys. Rev. B 62, 4845 (2000)CrossRefADSGoogle Scholar
  3. 3.
    J.-P. Salvetat, T. Fehér, C. L’Huillier, F. Beuneu, L. Forró, Phys. Rev. B 72, 075440 (2005)CrossRefADSGoogle Scholar
  4. 4.
    B. Corzilius, K.-P. Dinse, K. Hata, J. van Slageren, Phys. Rev. B 75, 235416 (2007)CrossRefADSGoogle Scholar
  5. 5.
    B. Corzilius, K.-P. Dinse, K. Hata, M. Haluška, V. Skákalová, S. Roth, Phys. Stat. Sol. (b) 245, 2251 (2008)Google Scholar
  6. 6.
    R.J. Elliot, Phys. Rev. 96, 266 (1954)CrossRefADSGoogle Scholar
  7. 7.
    P. Byszewski, A. Nabialek, Europhys. Lett. 34, 31 (1996)CrossRefADSGoogle Scholar
  8. 8.
    T. Ando, J. Phys. Soc. Jpn. 69, 1757 (2000)CrossRefADSGoogle Scholar
  9. 9.
    D. Huertas-Hernando, F. Guinea, A. Brataas, Phys. Rev. B 74, 155426 (2006)CrossRefADSGoogle Scholar
  10. 10.
    F. Kuemmeth, S. Ilani, D.C. Ralph, P.L. McEuen, Nature 452, 448 (2008)CrossRefADSGoogle Scholar
  11. 11.
    K. Hata, D.N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima, Science 306, 1362 (2004)CrossRefADSGoogle Scholar
  12. 12.
    A.K. Hassan, L.-C. Brunel, J. Magn. Reson. 142, 300 (2000)CrossRefADSGoogle Scholar
  13. 13.
    J. van Tol, L.-C. Brunel, R.J. Wylde, Rev. Sci. Instrum. 76, 074101 (2005)CrossRefADSGoogle Scholar
  14. 14.
    A. Kleinhammes, S.-H. Mao, X.-J. Yang, X.-P. Tang, H. Shimoda, J.P. Lu, O. Zhou, Y. Wu, Phys. Rev. B 68, 075418 (2003)CrossRefADSGoogle Scholar
  15. 15.
    V.M. Bermudez, L.M. Ericson, Langmuir 22, 2258 (2006)CrossRefGoogle Scholar
  16. 16.
    B. Corzilius, K.-P. Dinse, K. Hata, Phys. Chem. Chem. Phys. 9, 6063 (2007)CrossRefGoogle Scholar
  17. 17.
    D.-N. Peligrad, B. Nebendahl, C. Kessler, M. Mehring, A. Dulčiċ, M. Požek, D. Paar, Phys. Rev. B 58, 11652 (1998)CrossRefADSGoogle Scholar
  18. 18.
    H. Zhu, G. Zhao, C. Masarapu, D.P. Young, B. Wei, Appl. Phys. Lett. 86, 203107 (2005)CrossRefADSGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Klaus-Peter Dinse
    • 1
  • Johan van Tol
    • 2
  • Andrew Ozarowski
    • 2
  • Björn Corzilius
    • 3
  1. 1.Fachbereich PhysikFreie Universität BerlinBerlinGermany
  2. 2.Center for Interdisciplinary Magnetic ResonanceNational High Magnetic Field Laboratory, Florida State UniversityTallahasseeUSA
  3. 3.Francis Bitter Magnet LaboratoryMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations