Skip to main content
Log in

High-field EPR Study of the Effect of Chloride on Mn2+ Ions in Frozen Aqueous Solutions

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The effect of chloride concentration on Mn2+ (S = 5/2, I = 5/2) ions in frozen aqueous solutions is studied by high-field high-frequency electron paramagnetic resonance (HFEPR). The usually six sharp lines characteristic of Mn2+ ions, arising from the m s  = −1/2 → 1/2 transition, is modified by the addition of Cl anions and the six resonances become much broader and more complex. This new feature likely arises from the ligation of one Cl anion to a hydrated Mn2+ ion forming a [Mn(H2O)5Cl] complex. This complex increases linearly with Cl concentration with an association constant of K a, apparent = 61 M−1. The structure of the putative chloride complex was studied using density functional theory calculations and the expected zero-field interaction of such a manganese center was calculated using the superposition model. The predicted values were similar to those determined from the simulation of the spectrum of the m s  = −5/3 → −3/2 transition of the chloride complex. This effect of Cl anions occurs at biologically relevant concentration and can be used to probe the Mn2+ ions in cellular and protein environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N.S. Jakubovics, H.F. Jenkinson, Microbiology 147, 1709–1718 (2001)

    Google Scholar 

  2. B.J. Gaffney, C. Su, E.H. Oliw, Appl. Magn. Reson. 21, 413–424 (2001)

    Article  Google Scholar 

  3. S. Un, P. Dorlet, G. Voyard, L.C. Tabares, N. Cortez, J. Am. Chem. Soc. 123, 10123–10124 (2001)

    Article  Google Scholar 

  4. D. Goldfarb, K.V. Narasimhulu, R. Carmieli, Magn. Reson. Chem. 43, S40–S50 (2005)

    Article  Google Scholar 

  5. A. Angerhofer, E.W. Moomaw, I. Garcia-Rubio, A. Ozarowski, J. Krzystek, R.T. Weber, N.G. Richards, J. Phys. Chem. B. 111, 5043–5046 (2007)

    Article  Google Scholar 

  6. L.C. Tabares, N. Cortez, I. Agalidis, S. Un, J. Am. Chem. Soc. 127, 6039–6047 (2005)

    Article  Google Scholar 

  7. K. Barnese, E.B. Gralla, D.E. Cabelli, J.S. Valentine, J. Am. Chem. Soc. 130, 4604–4606 (2008)

    Article  Google Scholar 

  8. M.J. Horsburgh, S.J. Wharton, M. Karavolos, S.J. Foster, Trends. Microbiol. 10, 496–501 (2002)

    Article  Google Scholar 

  9. J. Gätjens, M. Sjodin, V.L. Pecoraro, S. Un, J. Am. Chem. Soc. 129, 13825–13827 (2007)

    Article  Google Scholar 

  10. M. Sjodin, J. Gatjens, L.C. Tabares, P. Thuery, V.L. Pecoraro, S. Un, Inorg. Chem. 47, 2897–2908 (2008)

    Article  Google Scholar 

  11. A. Potapov, D. Goldfarb, Inorg. Chem. 47, 10491–10498 (2008)

    Article  Google Scholar 

  12. S. Un, P. Dorlet, A.W. Rutherford, Appl. Magn. Reson. 21, 341–361 (2001)

    Article  Google Scholar 

  13. O. Burghaus, M. Plato, M. Rohrer, K. Moebius, F. MacMillan, W. Lubitz, J. Phys. Chem. 97, 7639–7647 (1993)

    Article  Google Scholar 

  14. S. Un, L.C. Tabares, N. Cortez, B.Y. Hiraoka, F. Yamakura, J. Am. Chem. Soc. 126, 2720–2726 (2004)

    Article  Google Scholar 

  15. E. Meirovitch, Z. Luz, A.J. Kalb, J. Am. Chem. Soc. 96, 7538 (1974)

    Google Scholar 

  16. O. Matumura, J. Phys. Soc. Jpn. 108, 108 (1959)

    Google Scholar 

  17. C. Duboc, T. Phoeung, S. Zein, J. Pecaut, M.N. Collomb, F. Neese, Inorg. Chem. 46, 4905–4916 (2007)

    Article  Google Scholar 

  18. M. Heming, S. Remme, G. Lehmann, J. Magn. Reson. 69, 134–143 (1986)

    Google Scholar 

  19. F. Weigend, F. Furche, R. Ahlrichs, J. Chem. Phys. 119, 12753–12762 (2003)

    Article  ADS  Google Scholar 

  20. M.J. Frisch, G.W.T.H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R.C.J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C.B.J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B.M.M. Cossi, G. Scalmani, N. Rega G.A. Petersson, H.N.M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.H.M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M.K.X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J.J.R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R.C.C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A.V.P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S.D.A.D. Daniels, M.C. Strain, O. Farkas, D.K.M.A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V.O.Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B.S.G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L.M.D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A.N.M. Challacombe, P.M.W. Gill, B. Johnson, W.C.M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision B.05 (2003)

  21. D.J. Newman, W. Urban, Adv. Phys. 24, 793–844 (1975)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank A. W. Rutherford for support and encouragement, T. L. Lai for technical assistance and F. Leach for valuable help in preparing this manuscript. A.S. is grateful for financial support from the IRTELIS (international research training for excellence in life science) graduate program. This research was supported by the (EU COST) European Cooperation in Science and Technology) P15 action on “Advanced paramagnetic resonance methods in molecular biophysics”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun Un.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Un, S., Sedoud, A. High-field EPR Study of the Effect of Chloride on Mn2+ Ions in Frozen Aqueous Solutions. Appl Magn Reson 37, 247–256 (2010). https://doi.org/10.1007/s00723-009-0062-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-009-0062-y

Keywords

Navigation