Skip to main content
Log in

Low-Field, Time-Resolved Dynamic Nuclear Polarization with Field Cycling and High-Resolution NMR Detection

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Dynamic nuclear polarization (DNP) effects in aqueous solutions of stable 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL) radicals were studied in a pulsed mode of pumping the electron paramagnetic resonance (EPR) transitions. Our fast field cycling setup allowed us to perform the EPR pumping at low magnetic fields and to detect the enhanced nuclear magnetic resonance signals at 7 T with high spectral resolution. Pumping was performed at two different frequencies, 300 MHz and 1.4 GHz, corresponding to magnetic fields around 10 and 48.6 mT, respectively. For both frequencies, the DNP enhancements were close to the limiting theoretical values of −110 (14N TEMPOL) and −165 (15N TEMPOL). Our pulsed experiments exploit coherent motion of the electronic spins in the radio-frequency field as seen by an oscillatory component in the dependence of the DNP effect on the radio-frequency pulse duration. The DNP enhancement was studied in detail as a function of the pulse length, duty cycle, delay between the pulses, and applied power. The analysis of the results shows that pulsed DNP experiments provide an opportunity to achieve enhancements of about −110 with relatively low applied power as compared to the standard continuous-wave DNP experiments. An adequate theoretical approach to the problem under study is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K.H. Hausser, D. Stehlik, in Advances in Magnetic Resonance, vol. 3, ed. by J.S. Waugh (Academic Press Inc, New York, 1968), pp. 79–139

    Google Scholar 

  2. T.R. Carver, C.P. Slichter, Phys. Rev. 92, 212–213 (1953)

    Article  ADS  Google Scholar 

  3. J.H. Ardenkjaer-Larsen, B. Fridlund, A. Gram, G. Hansson, L. Hansson, M.H. Lerche, R. Servin, M. Thaning, K. Golman, Proc. Natl. Acad. Sci. USA 100, 10158–10163 (2003)

    Google Scholar 

  4. K. Golman, L.E. Olsson, O. Axelsson, S. Mansson, M. Karlsson, J.S. Petersson, Br. J. Radiol. 76, S118–S127 (2003)

    Article  Google Scholar 

  5. S. Mansson, E. Johansson, P. Magnusson, C.-M. Chai, G. Hansson, J.S. Petersson, F. Stahlberg, K. Golman, Eur. Radiol. 16, 57–67 (2006)

    Article  Google Scholar 

  6. A.B. Barnes, G. De Paepe, P.C.A. van der Wel, K.N. Hu, C.G. Joo, V.S. Bajaj, M.L. Mak-Jurkauskas, J.R. Sirigiri, J. Herzfeld, R.J. Temkin, R.G. Griffin, Appl. Magn. Reson. 34, 237–263 (2008)

    Article  Google Scholar 

  7. T. Prisner, W. Köckenberger, Appl. Magn. Reson. 34, 213–218 (2008)

    Article  Google Scholar 

  8. T. Maly, G.T. Debelouchina, V.S. Bajaj, K.-N. Hu, C.-G. Joo, M.L. Mak-Jurkauskas, J.R. Sirigiri, P.C.A. van der Wel, J. Herzfeld, R.J. Temkin, R.G. Griffin, J. Chem. Phys. 128, 052211/1–052211/19 (2008)

  9. P. Hoefer, P. Carl, G. Guthausen, T. Prisner, M. Reese, T. Carlomagno, C. Griesinger, M. Bennati, Appl. Magn. Reson. 34, 393–398 (2008)

    Article  Google Scholar 

  10. W. Müller-Warmuth, K. Meise-Gresch, in Advances in Magnetic Resonance, vol. 11, ed. by J.S. Waugh (Academic Press, New York, 1983), pp. 1–45

  11. J. Potenza, Adv. Mol. Relax. Process. 4, 229–354 (1972)

    Article  Google Scholar 

  12. E.R. McCarney, B.D. Armstrong, R. Kausik, S. Han, Langmuir 24, 10062–10072 (2008)

    Article  Google Scholar 

  13. B.D. Armstrong, S. Han, J. Am. Chem. Soc. 131, 4641–4647 (2009)

    Article  Google Scholar 

  14. V.V. Khramtsov, I.A. Grigor’Ev, M.A. Foster, D.J. Lurie, I. Nicholson, Cel. Mol. Biol. (Paris) 46, 1361–1374 (2000)

    Google Scholar 

  15. D. Grucker, T. Guiberteau, B. Eclancher, Magn. Reson. Med. 34, 219–226 (1995)

    Article  Google Scholar 

  16. M.E. Halse, P.T. Callaghan, J. Magn. Reson. 195, 162–168 (2008)

    Article  ADS  Google Scholar 

  17. S. Grosse, F. Gubaydullin, H. Scheelken, H.-M. Vieth, A.V. Yurkovskaya, Appl. Magn. Reson. 17, 211–225 (1999)

    Article  Google Scholar 

  18. S. Grosse, PhD Thesis, Fachbereich Physik, Freie Universität Berlin, Berlin, Germany, 2000, p. 178

  19. S. Un, T. Prisner, R.T. Weber, M.J. Seaman, K.W. Fishbein, A.E. McDermott, D.J. Singel, R.G. Griffin, Chem. Phys. Lett. 189, 54–59 (1992)

    Article  ADS  Google Scholar 

  20. M. Alecci, D.J. Lurie, J. Magn. Reson. 138, 313–319 (1999)

    Article  ADS  Google Scholar 

  21. J. Mispelter, M. Lupu, A. Briguet, NMR Probeheads for Biophysical and Biomedical Experiments: Theoretical Principles and Practical Guidelines (Imperial College Press, London, 2006)

  22. E.G. Rozantsev, Free Nitroxide Radicals (Plenum Press, New York/London, 1970)

    Google Scholar 

  23. I. Solomon, Phys. Rev. 99, 559–565 (1955)

    Article  ADS  Google Scholar 

  24. B.H. Robinson, D.A. Haas, C. Mailer, Science (Washington, D.C., United States) 263, 490–493 (1994)

    Article  ADS  Google Scholar 

  25. N.N. Lukzen, M.V. Petrova, I.V. Koptyug, A.A. Savelov, R.Z. Sagdeev, J. Magn. Reson. 196, 164–169 (2009)

    Article  ADS  Google Scholar 

  26. N.N. Lukzen, A.A. Savelov, J. Magn. Reson. 185, 71–76 (2007)

    Article  ADS  Google Scholar 

  27. R.R. Ernst, W.A. Anderson, Rev. Sci. Instrum. 37, 93–102 (1966)

    Article  ADS  Google Scholar 

  28. R.R. Ernst, G. Bodenhausen, A. Wokaun, Principles of Nuclear Magnetic Resonances in One and Two Dimensions (Clarendon Press, Oxford, 1978)

  29. M.J. Prandolini, V.P. Denysenkov, M. Gafurov, B. Endeward, T.F. Prisner, J. Am. Chem. Soc. 131, 6090–6092 (2009)

    Article  Google Scholar 

  30. B.D. Armstrong, S. Han, J. Chem. Phys. 127, 104508/1–104508/10 (2007)

  31. R.D. Bates Jr., W.S. Drozdoski, J. Chem. Phys. 67, 4038–4044 (1977)

    Article  ADS  Google Scholar 

  32. M. Tseitlin, A. Dhami, R.W. Quine, G.A. Rinard, S.S. Eaton, G.R. Eaton, Appl. Magn. Reson. 30, 651–656 (2006)

    Article  Google Scholar 

  33. S.V. Dvinskikh, A.V. Yurkovskaya, H.-M. Vieth, J. Phys. Chem. 100, 8125–8130 (1996)

    Article  Google Scholar 

  34. S.V. Dvinskikh, G. Buntkowsky, K.M. Salikhov, H.M. Vieth, Chem. Phys. Lett. 268, 401–407 (1997)

    Article  ADS  Google Scholar 

  35. S.V. Dvinskikh, A.V. Egorov, H.M. Vieth, Appl. Magn. Reson. 12, 465–476 (1997)

    Article  Google Scholar 

Download references

Acknowledgments

The financial support by the Sixth Framework Programme of the European Community via Bio-DNP grant No. 011721 and Marie Curie Actions program (project MIF2-CT-2006-022008), the Russian Fund for Basic Research (projects No. 07-03-00424-a, 08-03-00539-a, 09-03-00837-a) and Deutsche Forschungsgemeinschaft (RFBR-DFG 09-03-91335-NNIO_a) is gratefully acknowledged. K.L.I. acknowledges support from the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Martin Vieth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korchak, S.E., Kiryutin, A.S., Ivanov, K.L. et al. Low-Field, Time-Resolved Dynamic Nuclear Polarization with Field Cycling and High-Resolution NMR Detection. Appl Magn Reson 37, 515 (2010). https://doi.org/10.1007/s00723-009-0060-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00723-009-0060-0

Keywords

Navigation