Skip to main content
Log in

On Electron Spin Polarization Created in the Excited Triplet State of Accessory Chlorophyll via Photoinduced Charge-Recombination of the Photosystem II Reaction Center

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

We present a theoretical approach to investigate the electron spin polarization (ESP) of the excited triplet state that has been detected using the time-resolved electron paramagnetic resonance (TREPR) method in the photosystem II center of the plants. We show, using the stochastic Liouville equation, that the ESP pattern created in the accessory chlorophyll (ChlaccD1) which reside near the PD1 chlorophyll of the active branch is explained by one-step, concerted double electron transfer model, initiating from the singlet–triplet conversion of the light-induced charge-separated state composed of PD1 radical cation and pheophytin radical anion. We also considered the sequential ESP transfer model via the triplet charge-recombination (CR) and the triplet–triplet energy transfer processes. It has been clearly shown that the ESP created in the 3ChlaccD1* is dependent on the rate constant (k TT) of the triplet–triplet energy transfer from the intermediate triplet state created by the CR. Also we show that the relative orientation of the principal axes of the spin dipolar interaction in the intermediate triplet state (3PD1*, as an example) may play a role in the ESP pattern, when the k TT is smaller than the angular frequency of the Zeeman energy. We have theoretically shown that the TREPR measurement of the ESP is very powerful to investigate the primary chemical process and to characterize the intermediate as a signature of the stepwise ESP transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. B.A. Diner, F. Rappaport, Annu. Rev. Plant Biol. 53, 551–580 (2002)

    Article  Google Scholar 

  2. T. Noguchi, T. Tomo, C. Kato, Biochemistry 40, 2176–2185 (2001)

    Article  Google Scholar 

  3. Y. Takahashi, Ö. Hansson, P. Mathis, K. Satoh, Biochim. Biophys. Acta-Bioenerg. 893, 49–59 (1987)

    Article  Google Scholar 

  4. I. Vass, S. Styring, T. Hundal, A. Koivuniemi, E. Aro, B. Andersson, Proc. Natl. Acad. Sci. USA 89, 1408–1412 (1992)

    Article  ADS  Google Scholar 

  5. M. Kammel, J. Kern, W. Lubitz, R. Bittl, Biochim. Biophys. Acta-Bioenerg. 1605, 47–54 (2003)

    Article  Google Scholar 

  6. H. Murai, S. Yamauchi, A. Kawai, K. Obi, N. Hirota, Appl. Magn. Reson. 23, 249–267 (2003)

    Article  Google Scholar 

  7. J.R. Norris, A.L. Morris, M.C. Thurnauer, J. Tang, J. Chem. Phys. 92, 4239–4249 (1990)

    Article  ADS  Google Scholar 

  8. G.L. Closs, M.D.E. Forbes, J.R. Norris, J. Phys. Chem. 91, 3592–3599 (1987)

    Article  Google Scholar 

  9. K. Akiyama, S. Tero-Kubota, T. Ikoma, Y. Ikegami, J. Am. Chem. Soc. 116, 5324–5327 (1994)

    Article  Google Scholar 

  10. A.L. Morris, S.W. Snyder, Y.N. Zhang, J. Tang, M.C. Thurnauer, P.L. Dutton, D.E. Robertson, M.R. Gunner, J. Phys. Chem. 99, 3854–3866 (1995)

    Article  Google Scholar 

  11. Y. Kobori, S. Yamauchi, K. Akiyama, S. Tero-Kubota, H. Imahori, S. Fukuzumi, J.R. Norris, Proc. Natl. Acad. Sci. USA 102, 10017–10022 (2005)

    Article  ADS  Google Scholar 

  12. G. Kothe, S. Weber, E. Ohmes, M.C. Thurnauer, J.R. Norris, J. Phys. Chem. 98, 2706–2712 (1994)

    Article  Google Scholar 

  13. F. Lendzian, R. Bittl, A. Telfer, W. Lubitz, Biochim. Biophys. Acta-Bioenerg. 1605, 35–46 (2003)

    Article  Google Scholar 

  14. M.K. Bosch, Proskuryakov II, P. Gast, A.J. Hoff, J. Phys. Chem. 100, 2384–2390 (1996)

    Google Scholar 

  15. H. Levanon, J.R. Norris, Chem. Rev. 78, 185–198 (1978)

    Article  Google Scholar 

  16. M. Di Valentin, S. Ceola, E. Salvadori, G. Agostini, D. Carbonera, Biochim. Biophys. Acta-Bioenerg. 1777, 186–195 (2008)

    Article  Google Scholar 

  17. J.A. Bautista, R.G. Hiller, F.P. Sharples, D. Gosztola, M. Wasielewski, H.A. Frank, J. Phys. Chem. A 103, 2267–2273 (1999)

    Article  Google Scholar 

  18. P.J. Walla, P.A. Linden, C.-P. Hsu, G.D. Scholes, G.R. Fleming, Proc. Natl. Acad. Sci. USA 97, 10808–10813 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank Professor Hiroyuki Mino (Nagoya University) for valuable discussions concerning the kinetics and the mechanism of the charge separation and the triplet formation in the PS II systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Kobori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katagiri, S., Kobori, Y. On Electron Spin Polarization Created in the Excited Triplet State of Accessory Chlorophyll via Photoinduced Charge-Recombination of the Photosystem II Reaction Center. Appl Magn Reson 37, 177–189 (2010). https://doi.org/10.1007/s00723-009-0049-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-009-0049-8

Keywords

Navigation