Skip to main content
Log in

Assessment of Nitrones as In Vivo Redox Sensors

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Spin traps such as 5,5-dimethyl-1-pyrroline N-oxide, α-phenyl-tert-butyl nitrone, α-(4-pyridyl-1-oxide)-N-tert-butyl nitrone and newer generation 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide analogs have been known for years. What are the desired properties of good probes for measuring in vivo redox reactions in biological systems? These are specificity, sensitivity, rapid, high yield kinetics, low toxicity, high stability and easy to administer and target. Unfortunately, the nitrones perform poorly in almost all of these categories. Typical in vivo concentrations of spin trap approach 100 mM (assuming solubility and toxicity are not an issue), frequently yield 1% nitroxide or less stoichiometry, are typically unstable with time and frequently lack specificity. In vivo electron paramagnetic resonance (EPR) experiments need to have strong signals that correlate with redox chemistry. The resultant signal should be stable and not rapidly interconvert to other diamagnetic species. Fortunately, some newer probes of in vivo redox reactions in biological systems have come upon the horizon. In fact some have been around for a long time, but their virtues are becoming increasingly appreciated. This paper summarizes the disadvantages of nitrones versus the clear advantages of other probes of free radicals, redox state and the like by EPR. It also expands on the properties of nitroxides and nitrones as therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. L.J. Berliner (ed.), Biol. Magn. Reson., vol. 18 (Kluwer, New York, 2003)

  2. R. Bolli, B.S. Patel, M.O. Jeroudi, E.K. Lai, P.B. McCay, J. Clin. Invest. 82, 476–485 (1989)

    Article  Google Scholar 

  3. G.W. Mergner, W.B. Weglicki, J.H. Kramer, Circulation 84, 2079–2090 (1991)

    Google Scholar 

  4. J.L. Zweier, J.T. Flaherty, M.L. Weisfeldt, Proc. Natl. Acad. Sci. USA 84, 1404–1407 (1987)

    Article  ADS  Google Scholar 

  5. J.L. Zweier, P. Kuppusamy, Proc. Natl. Acad. Sci. USA 85, 5703–5707 (1988)

    Article  ADS  Google Scholar 

  6. M.G. Hartell, G. Borzone, L.J. Berliner, T. Clanton, Free Radic. Biol. Med. 17, 467–472 (1994)

    Article  Google Scholar 

  7. J. Carney, R. Floyd, Phenyl butyl nitrone compositions and methods for treatment of oxidative tissue damage, US Patent 5025032 issued on June 18, 1991

  8. J. Carney, R. Floyd, Phenylbutyl nitrone compositions and methods for prevention of gastric ulceration, US Patent 5036097 issued on July 30, 1991

  9. J. Carney, R. Floyd, Spin trapping pharmaceutical compositions and methods for use thereof, US Patent 5622994 issued on April 22, 1997

  10. P.H. Proctor, Topical spin trap composition and method, US Patent 5723502 issued on March 3, 1998

  11. R.F. Haseloff, S. Zollner, I.A. Kirilyuk, I.A. Grigorev, R. Reszka, R. Bernhardt, K. Mertsch, B. Roloff, I.E. Blasig, FEBS Lett. 418, 73–75 (1997)

    Article  Google Scholar 

  12. C.F. Schaefer, E.G. Janzen, M.S. West, J.L. Poyer, S.D. Kosanke, Free Radic. Biol. Med. 21, 427–436 (1996)

    Article  Google Scholar 

  13. B.E. Britigan, G.M. Rosen, Y. Chai, M.S. Cohen, J. Biol. Chem. 261, 4426–4431 (1986)

    Google Scholar 

  14. V. Khramtsov, L.J. Berliner, T.L. Clanton, Magn. Reson. Med. 42(2), 228–234 (1999)

    Article  Google Scholar 

  15. L.J. Berliner, V. Khramtsov, H. Fujii, T.L. Clanton, Free Radic. Biol. Med. 30(5), 489–499 (2001)

    Article  Google Scholar 

  16. D.N. Polovyanenko, V.F. Plyusnin, V.A. Reznikov, V.V. Khramtsov, E.G. Bagryanskaya, J. Phys. Chem. B 112, 4841–4847 (2008)

    Article  Google Scholar 

  17. D.I. Potapenko, E.G. Bagryanskaya, Y.P. Tsentalovich, V.A. Reznikov, T.L. Clanton, V.V. Khramtsov, J. Phys. Chem. B 108, 9315–9324 (2004)

    Article  Google Scholar 

  18. D.I. Potapenko, E.G. Bagryanskaya, V.V. Reznikov, T.L. Clanton, V.V. Khramtsov, Magn. Reson. Chem. 41, 603–608 (2003)

    Article  Google Scholar 

  19. H. Fujii, B. Zhao, J. Koscielniak, L.J. Berliner, Magn. Reson. Med. 31, 77–80 (1994)

    Article  Google Scholar 

  20. H. Fujii, L.J. Berliner, Magn. Reson. Med. 42, 691–694 (1999)

    Article  Google Scholar 

  21. B.M. Psaty, S.R. Heckbert, T.D. Koepsell, J. Am. Med. Assoc. 274, 620–625 (1995)

    Article  Google Scholar 

  22. A. Samuni, C.M. Krishna, P. Riesz, E. Finkelstein, A. Russo, J. Biol. Chem. 263, 17921–17924 (1988)

    Google Scholar 

  23. A. Samuni, C.M. Krishna, J.B. Mitchell, C.R. Collins, A. Russo, Biochemistry 29, 2802–2807 (1990)

    Article  Google Scholar 

  24. S. Goldstein, G. Merenyi, A. Russo, A. Samuni, J. Am. Chem. Soc. 125, 789–795 (2003)

    Article  Google Scholar 

  25. S.M. Hahn, Z. Tochner, C.M. Krishna, J. Glass, L. Wilson, A. Samuni, M. Sprague, D. Venzon, E. Glatstein, J.B. Mitchell, A. Russo, Cancer Res. 52, 1750–1753 (1992)

    Google Scholar 

  26. Y. Han, B. Tuccio, R. Lauricella, F.A. Villamena, J. Org. Chem. 73, 7108–7117 (2008)

    Article  Google Scholar 

  27. F.A. Villamena, S. Xia, J.K. Merle, R. Lauricella, B. Tuccio, C.M. Hadad, J.L. Zweier, J. Am. Chem. Soc. 129, 8177–8191 (2007)

    Article  Google Scholar 

  28. Y. Han, B. Tuccio, R. Lauricella, A. Rockenbauer, J.L. Zweier, F.A. Villamena, J. Org. Chem. 73, 2533–2541 (2008)

    Article  Google Scholar 

  29. R. Lauricella, A. Allouch, V. Roubaud, J.-C. Bouteiller, B. Tuccio, Org. Biomol. Chem. 2, 1304–1309 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence J. Berliner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berliner, L.J. Assessment of Nitrones as In Vivo Redox Sensors. Appl Magn Reson 36, 157–170 (2009). https://doi.org/10.1007/s00723-009-0034-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-009-0034-2

Keywords

Navigation