Skip to main content
Log in

EPR Study of Cr3+ and Fe3+ Impurity Ions in Nominally Pure and Co2+-Doped YAlO3 Single Crystals

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

In this paper, we report electron paramagnetic resonance (EPR) measurements of YAlO3 (YAP) single crystals and their preliminary theoretical analysis. Two kinds of the as-grown and annealed (in reducing N2 plus H2 atmosphere at 1100 K) YAP samples, nominally pure and doped with Co2+ ions, were studied. The presence of small amounts of Cr3+ and Fe3+ paramagnetic centers is revealed from the observed EPR spectral lines. In the annealed crystals, a decrease in the line intensity for Fe3+ ions and a simultaneous increase for Cr3+ ions is observed. Interestingly, a gradual decrease in intensity of both the Cr3+ and Fe3+ lines down to zero has been observed in EPR spectra below 80 K. The aim of this paper, first in the series of investigations, is to unravel characteristics of unintentional impurities present in nominally pure YAP crystals as indicated by EPR measurements. For this purpose, the spin Hamiltonian analysis of EPR spectra has been carried out on the basis of the triclinic (C i ) site symmetry. The fitted spin Hamiltonian parameters for Cr3+ and Fe3+ ions, i.e., zero-field splitting parameters and the Zeeman electronic tensor components, agree well with literature data. More detailed analysis of low symmetry aspects involved in EPR studies based on superposition model will be provided elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. I.F. Elder, M.J. Payne, Opt. Commun. 148, 265 (1998)

    Article  ADS  Google Scholar 

  2. A.A. Kaminski, Laser Crystals (Springer, Berlin, 1990)

  3. A.J. Wojtowicz, J. Glodo, A. Lempicki, C. Brecher, J. Phys. Condens. Matter 10, 8401 (1998)

    Article  ADS  Google Scholar 

  4. M. Noginov, N. Noginova, M. Gyrley, N. Kukhtarev, H. Caulfield, P. Venkateswarly, G. Loutts, J. Opt. Soc. Am. B 15, 1463 (1998)

    Article  ADS  Google Scholar 

  5. A.M. Grishin, G.V. Gusakov, A.B. Mukhin, N.Y. Starostiuk, D.I. Savitski, I.M. Suvorotka, Pisma v Zhurnal Technicheskoj Fiziki 57, 498 (1993)

    Google Scholar 

  6. S. Geller, E.A. Wood, Acta Crystallogr. 9, 563 (1956)

    Article  Google Scholar 

  7. L. Vasylechko, A. Matkovskii, D. Savytski, A. Suchocki, F. Wallrafen, J. Alloys Compds. 291, 57 (1999)

    Article  Google Scholar 

  8. M. Yamaga, H. Takeuchi, T.J. Han, B. Henderson, J. Phys. Condens. Matter 5, 8097 (1993)

    Google Scholar 

  9. R.F. Belt, J.R. Latore, R. Uhrin, Appl. Phys. Lett. 25, 218 (1974)

    Article  ADS  Google Scholar 

  10. R.R. Rakhimov, A.L. Wilkerson, G.B. Loutts, M.A. Noginov, N. Noginova, W. Lindsay, H.R. Ries, Solid State Commun. 108, 549 (1998)

    Article  ADS  Google Scholar 

  11. M. Yamaga, T. Yosida, B. Henderson, K. O’Donnell, M. Date, J. Phys. Condens. Matter 4, 7285 (1992)

    Article  ADS  Google Scholar 

  12. T. Tomiki, M. Kaminao, Y. Tanahana, T. Futemma, M. Fujisowa, F. Fukudome, J. Phys. Soc. Jpn. 60, 1799 (1991)

    Article  ADS  Google Scholar 

  13. D.I. Savytskii, L.O. Vasylechko, A.O. Matkovskii, I.M. Solskii, A. Suchocki, D.Y. Sugak, F. Wallrafen, J. Cryst. Growth 209, 874 (2000)

    Google Scholar 

  14. B. Perner, J. Kvapil, J. Kvapil, B. Mek, K. Blazek, Z. Hendrich, Cryst. Res. Technol. 20, 473 (1985)

    Article  Google Scholar 

  15. N. Niezamutdinov, N. Khasanowa, A. Goleev, G. Bułka, V. Vinokurov, V. Akkerman, G. Ermokov, Kristalografiya 34, 893 (1989)

    Google Scholar 

  16. A. Pinto, N.Z. Sherman, M.J. Weber, J. Magn. Reson. 6, 422 (1972)

    Google Scholar 

  17. D.J. Newman, B. Ng, Rep. Prog. Phys. 52, 954 (1989)

    Article  Google Scholar 

  18. P. Gnutek, C. Rudowicz, Opt. Mater. 31, 391 (2008)

    Article  ADS  Google Scholar 

  19. C. Rudowicz, P. Gnutek, Phys. B 403, 2349 (2008)

    Article  ADS  Google Scholar 

  20. R.L. White, G.F. Herrmann, J.W. Carson, M. Mandel, Phys. Rev. 136, A231 (1964)

    Article  ADS  Google Scholar 

  21. D.G. McGavin, M.Y. Mombourquette, J.A. Weil, Computer Program EPR–NMR version 6.5. (Department of Chemistry, University of Saskatchewan, Canada, 2002)

    Google Scholar 

  22. A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon Press, Oxford, 1970)

  23. A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Dover, New York, 1986)

  24. S. Altshuler, B.M. Kozyrev, Electron Paramagnetic Resonance in Compounds of Transition Elements (Wiley, New York, 1974)

  25. C. Rudowicz, Magn. Res. Rev. 13, 1 (1987)

    Google Scholar 

  26. C. Rudowicz, Magn. Res. Rev. 13, 335 (1987)

    Google Scholar 

  27. C. Rudowicz, S.K. Misra, Appl. Spectrosc. Rev. 36, 11 (2001)

    Article  ADS  Google Scholar 

  28. C. Rudowicz, J. Phys. C 18, 1415 (1985)

    Google Scholar 

  29. C. Rudowicz, J. Phys. C 18, 3837 (1985)

    Google Scholar 

  30. C. Rudowicz, C.Y. Chung, J. Phys. Condens. Matter 16, 5825 (2004)

    Article  ADS  Google Scholar 

  31. J.R. Pilbrow, Transition-Ion Electron Paramagnetic Resonance (Clarendon Press, Oxford, 1990)

  32. F.E. Mabbs, D. Collison, Electron Paramagnetic Resonance of d Transition-Metal Compounds (Elsevier, Amsterdam, 1992)

  33. C. Rudowicz, J. Phys. Condens. Matter 12, L417 (2000)

    Article  ADS  Google Scholar 

  34. T.H. Yeom, C. Rudowicz, S.H. Choh, D.G. McGavin, Phys. Stat. Sol. b 198, 839 (1996)

    Article  Google Scholar 

  35. D.G. McGavin, J. Magn. Reson. 74, 19 (1987)

    Google Scholar 

  36. Misra S. K., in Transition Series Ions, ed. by C. P. Poole Jr, H. A. Farach. Handbook of Electron Spin Resonance, vol. 2, chapt. VI (AIP, New York, 1999), pp. 85–114

  37. J.M. Baker, J. Kuriata, A.C. O’Connell, L. Sadlowski, J. Phys. Condens. Matter 7, 2321 (1995)

    Article  ADS  Google Scholar 

  38. J. Kuriata, J.M. Baker, L. Sadlowski, I. Stefaniuk, T. Bodziony, J. Phys. Condens. Matter 10, 407 (1998)

    Article  ADS  Google Scholar 

  39. A. Sugimoto, Y. Noble, K. Yamagishi, J. Cryst. Growth 140, 349 (1994)

    Article  ADS  Google Scholar 

  40. M. Korzyk, M. Livshits, N. Zotov, M. Meilman, Zhurnal Prikladnoj Spektroskopii 48, 972 (1988)

    Google Scholar 

  41. P. Dorenbos, M. Korzyk, A. Kudriavtseva, V. Liubetskii, B. Minkov, V. Pavlenko, A. Fedorov, Zhurnal Prikladnoj Spektroskopii 59, 226 (1993)

    Google Scholar 

  42. D. Sugak, A. Matkovskii, A. Durygin, A. Suchocki, I. Solskii, S. Ubizskii, K. Kopczynski, Z. Mierczyk, P. Potera, J. Lumin. 82, 9 (1999)

    Article  Google Scholar 

  43. S. Kuck, Appl. Phys. B 72, 515 (2001)

    Google Scholar 

  44. Z. Mierczyk, Z. Frukacz, J. Kisilewski, Proc. SPIE 3186, 180 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by a grant to A.S. from the Polish Ministry of Science and Education for the years 2006–2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Rudowicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stefaniuk, I., Rudowicz, C., Gnutek, P. et al. EPR Study of Cr3+ and Fe3+ Impurity Ions in Nominally Pure and Co2+-Doped YAlO3 Single Crystals. Appl Magn Reson 36, 371–380 (2009). https://doi.org/10.1007/s00723-009-0033-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-009-0033-3

Keywords

Navigation