Skip to main content
Log in

Dopant Spin States and Magnetic Interactions in Transition Metal (Fe3+)-Doped Semiconductor Nanoparticles: An EMR and Magnetometric Study

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

In this work, electron magnetic resonance (EMR) spectroscopy and magnetometry studies were employed to investigate the origin of the observed room-temperature ferromagnetism in chemically synthesized Sn1−x Fe x O2 powders. EMR data clearly established the presence of two different types of signals due to the incorporated Fe ions: paramagnetic spectra due to isolated Fe3+ ions and broad ferromagnetic resonance (FMR) spectra due to magnetically coupled Fe3+ dopant ions. EMR data analysis and simulation suggested the presence of high-spin (S = 5/2) Fe3+ ions incorporated into the SnO2 host lattice both at substitutional and at interstitial sites. The FMR signal intensity and the saturation magnetization M s of the ferromagnetic component increased with increasing Fe concentration. For Sn0.953Fe0.047O2 samples, well-defined EMR spectra revealing FMRs were observed only for samples prepared in the 350–600°C range, whereas for samples prepared at higher annealing temperatures up to 900°C, the FMRs and saturation magnetization were vanished due to diffusion and eventual expulsion of the Fe ions from the nanoparticles, in agreement with data obtained from Raman and X-ray photoelectron spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.H. MacDonald, P. Schiffer, N. Samarth, Nat. Mater. 4, 195 (2005)

    Article  ADS  Google Scholar 

  2. J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nat. Mater. 4, 173 (2005)

    Article  ADS  Google Scholar 

  3. N.H. Hong, J. Sakai, N.T. Huong, N. Poirot, A. Ruyter, Phys. Rev. B 72, 045336 (2005)

    Article  ADS  Google Scholar 

  4. J. Philip, A. Punnoose, B.I. Kim, K.M. Reddy, S. Layne, J.O. Holmes, B. Satpati, P.R. Leclair, T.S. Santos, J.S. Moodera, Nat. Mater. 5, 298 (2006)

    Article  ADS  Google Scholar 

  5. A. Punnoose, J. Hays, A. Thurber, M.H. Engelhard, R.K. Kukkadapu, C. Wang, V. Shutthananadan, S. Thevuthasan, Phys. Rev. B 72, 054402 (2005)

    Article  ADS  Google Scholar 

  6. Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, H. Koinuma, Science 291, 854 (2001)

    Article  ADS  Google Scholar 

  7. T.C. Kaspar, S.M. Heald, C.M. Wang, J.D. Bryan, T. Droubay, V. Shuthanandan, S. Thevuthasan, D.E. McCready, A.J. Kellock, D.R. Gamelin, S.A. Chambers, Phys. Rev. Lett. 95, 217203 (2005)

    Article  ADS  Google Scholar 

  8. W.T. Geng, K.S. Kim, Phys. Rev. B 68, 125203 (2003)

    Article  ADS  Google Scholar 

  9. K.W. Edmonds, P. Boguslawski, K.Y. Wang, R.P. Campion, S.N. Novikov, N.R.S. Farley, B.L. Gallagher, C.T. Foxon, M. Sawicki, T. Dietl, M.B. Nardelli, J. Bernholc, Phys. Rev. Lett. 92, 037201 (2004)

    Article  ADS  Google Scholar 

  10. X. Mathew, J. Hays, C. Mejía-García, G. Contreras-Puente, A. Punnoose, J. Appl. Phys. 99, 08M101 (2006)

  11. K. Nagata, A. Ishihara, J. Magn. Magn. Mater. 104, 1571 (1992)

    Article  ADS  Google Scholar 

  12. A. Punnoose, M.S. Seehra, J. van Tol, L.C. Brunel, J. Magn. Magn. Mater. 288, 168 (2005)

    Article  ADS  Google Scholar 

  13. A. Punnoose, M.S. Seehra, in EPR in the 21st Century, ed. by A. Kawamori, J. Yamauchi, H. Ohta, (Elsevier Science, 2002), p. 162

  14. V.F. Anufrienko, L.G. Yandralova, D.V. Tarasova, Sov. Phys. Solid State 13, 1970 (1972)

    Google Scholar 

  15. Y. Dusausoy, R. Ruck, J.M. Gaite, Phys. Chem. Miner. 15, 300 (1988)

    Article  ADS  Google Scholar 

  16. W. Rhein, C. Rosinski, Phys. Stat. Sol. (b) 118, 667 (1972)

    Google Scholar 

  17. R.R. Bartkowski, J.A. Tunhein, J. Phys. Chem. Solids 33, 2023 (1972)

    Article  ADS  Google Scholar 

  18. S.K. Misra, S.I. Andronenko, K.M. Reddy, J. Hays, A. Punnoose, J. Appl. Phys. 99, 08M106 (2006)

  19. H.H. Wickman, M.P. Klein, D.A. Shirley, J. Chem. Phys. 42, 2113 (1965)

    Google Scholar 

  20. G.J. Troup, D.R. Hutton, Br. J. Appl. Phys. 15, 1493 (1964)

    Article  ADS  Google Scholar 

  21. S.K. Misra, S.I. Andronenko, A. Punnoose, D. Tipikin, and J.H. Freed, Appl. Magn. Reson. 36 (2009). doi:10.1007/s00723-009-0024-4

Download references

Acknowledgments

At Boise State University, this research was supported by the National Science Foundation’s MRI grant DMR-0321051 (acquisition of the EMR spectrometer), and NSF-CAREER award DMR-0449639 (EMR studies), ARO grant W91NF-09-1-0051 (magnetic measurements), and the DoE-EPSCoR program DE-FG02-04ER46142 (materials synthesis). S.K.M. is grateful to the Natural Sciences and Engineering Research Council of Canada for partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Misra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Punnoose, A., Reddy, K.M., Hays, J. et al. Dopant Spin States and Magnetic Interactions in Transition Metal (Fe3+)-Doped Semiconductor Nanoparticles: An EMR and Magnetometric Study. Appl Magn Reson 36, 331–345 (2009). https://doi.org/10.1007/s00723-009-0029-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-009-0029-z

Keywords

Navigation