Skip to main content
Log in

p-Nitrostilbene-tert-Butyl-Nitrone: a Novel Fluorescent Spin Trap for the Detection of ROS with Subcellular Resolution

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

A fluorescent nitrone composed of a nitrostilbene moiety and the tert-butyl-nitrone has been synthesized. Upon addition of short-lived oxygen radicals a relatively stable nitroxide is formed which quenches the fluorescence. Simultaneously, the fluorescence maximum is shifted to shorter wavelength due to the shorter conjugated system. Hence, by means of confocal laser microscopy the formation of reactive oxygen species can be followed with subcellular resolution. The probe co-localizes with mitochondria. Quench was followed in Chinese hamster ovary cells on the second time scale either after generation of hydroxyl radicals by the Fenton reaction or, at almost the same rate, by blocking complexes I and III of the respiratory chain by rotenone and antimycin A. The fluorescence lasted for more than 20 min in controls. The fluorescence decay can be followed in a video presentation on our homepage (http://pcbc00.chemie.uni-kl.de/videostream/stream2java.html). The nature of the initial radical may eventually be determined by electron paramagnetic resonance spectroscopy of the adduct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Boveris, Adv. Exp. Med. Biol. 78, 67–82 (1977)

    Google Scholar 

  2. E.G. Janzen, Acc. Chem. Res. 2, 279–288 (1971)

    Article  Google Scholar 

  3. R. Kohen, A. Nyska, Toxicol. Pathol. 30, 620–650 (2002)

    Article  Google Scholar 

  4. E. Cadenas, K.J.A. Davies, Free Radic. Biol. Med. 29, 222–230 (2000)

    Article  Google Scholar 

  5. W. Droge, Physiol. Rev. 82, 47–95 (2002)

    Google Scholar 

  6. M. Inoue, E.F. Sato, M. Nishikawa, A.-M. Park, Y. Kira, I. Imada, K. Utsumi, Curr. Med. Chem. 10, 2495–2505 (2003)

    Article  Google Scholar 

  7. J.F. Turrens, J. Physiol. 552, 335–344 (2003)

    Article  Google Scholar 

  8. P. Jezek, Int. J. Biochem. Cell Biol. 34, 1190–1206 (2002)

    Article  Google Scholar 

  9. P. Jezek, L. Hlavata, Int. J. Biochem. Cell Biol. 37, 2478–2503 (2005)

    Article  Google Scholar 

  10. S. Krauss, C.-Y. Zhang, B.B. Lowell, Nat. Rev. Mol. Cell Biol. 6, 248–261 (2005)

    Article  Google Scholar 

  11. M.D. Brand, C. Affourtit, T.C. Esteves, K. Green, A.J. Lambert, S. Miwa, J.L. Pakay, N. Parker, Free Radic. Biol. Med. 37, 755–767 (2004)

    Article  Google Scholar 

  12. A. Negre-Salvayre, C. Hirtz, G. Carrera, R. Cazenave, M. Troly, R. Salvayre, L. Penicaud, L. Casteilla, FASEB J. 11, 809–815 (1997)

    Google Scholar 

  13. M. Ruzicka, E. Skobisova, A. Dlaskova, J. Santorova, K. Smolkova, T. Spacek, M. Zackova, M. Modriansky, P. Jezek, Int. J. Biochem. Cell Biol. 37, 809–821 (2005)

    Article  Google Scholar 

  14. P. Jakobs, A. Braun, P. Jezek, W.E. Trommer, FEBS Lett. 284, 195–198 (1991)

    Article  Google Scholar 

  15. P. Jezek, M. Bauer, W.E. Trommer, FEBS Lett. 361, 303–307 (1995)

    Article  Google Scholar 

  16. N. Raju, T. Spacek, J. Jezek, I.M. Caminiti, F. Leinisch, K. Hideg, P. Jezek, W.E. Trommer, Appl. Magn. Reson. 30, 373–383 (2006)

    Article  Google Scholar 

  17. S. Stoll, A. Schweiger, Biol. Magn. Reson. 27, 299–321 (2007)

    Google Scholar 

  18. M. Gruner, D. Pfeifer, H.G.O. Becker, R. Radeglia, J. Epperlein, J. Prakt. Chem. 327, 63–79 (1985)

    Article  Google Scholar 

  19. M.T. Reetz, J.G. de Vries, Chem. Commun. 14, 1559–1563 (2004)

    Article  Google Scholar 

  20. C. Walling, Acc. Chem. Res. 8, 125–131 (1975)

    Article  Google Scholar 

  21. D.L. Farkas, M.D. Wei, P. Febbroriello, J.H. Carson, L.M. Loew, Biophys. J. 56, 1053–1069 (1989)

    Article  Google Scholar 

  22. A. Dlaskova, L. Hlavata, P. Jezek, Int. J. Biochem. Cell Biol. 40, 1792–1805 (2008)

    Article  Google Scholar 

  23. D. Han, E. Williams, E. Cadenas, Biochem. J. 353, 411–416 (2001)

    Article  Google Scholar 

  24. E. Lozinsky, A.I. Shames, G. Likhtenshtein, Recent Res. Dev. Photochem. Photobiol. 5, 41–55 (2001)

    Google Scholar 

  25. I.M. Bystryak, G.I. Likhtenshtein, A.I. Kotel’nikov, O. Hankovsky, K. Hideg, Russ. J. Phys. Chem. 60, 1679–1683 (1986)

    Google Scholar 

  26. T. Kalai, E. Hideg, I. Vass, K. Hideg, Free Radic. Biol. Med. 24, 649–652 (1998)

    Article  Google Scholar 

  27. S. Pou, A. Bhan, V.S. Bhadti, S.Y. Wu, R.S. Hosmane, G.M. Rosen, FASEB J. 9, 1085–1090 (1995)

    Google Scholar 

  28. S.E. Bottle, G.R. Hanson, A.S. Micallef, Org. Biomol. Chem. 1, 2585–2589 (2003)

    Article  Google Scholar 

  29. B. Heyne, C. Beddie, J.C. Scaiano, Org. Biomol. Chem. 5, 1454–1458 (2001)

    Article  Google Scholar 

  30. N.V. Blough, D.J. Simpson, J. Amer. Chem. Soc. 110, 1915–1917 (1988)

    Article  Google Scholar 

  31. J.R. Harbour, V. Chow, J.R. Bolton, Can. J. Chem. 52, 3549–3553 (1974)

    Article  Google Scholar 

  32. Y. Sugiura, T. Kikuchi, J. Antibiotics 31, 1310–1312 (1978)

    Google Scholar 

  33. F.A. Villamena, J.K. Merle, C.M. Hada, J.L. Zweier, J. Phys. Chem. A 109, 6083–6088, 6089–6098 (2005)

    Google Scholar 

  34. K. Stolze, N. Udilova, H. Nohl, Biol. Chem. 384, 493–500 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

We want to thank Prof. Gertz Likhtenshtein, Ben Gurion University of the Negev, Israel, as well as Dr. Vlad Papper and Dr. Matthias Schneider for their initial suggestion to use stilbenes as fluorophores and the synthesis of an unsubstituted stilbene nitrone in our laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang E. Trommer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hauck, S., Lorat, Y., Leinisch, F. et al. p-Nitrostilbene-tert-Butyl-Nitrone: a Novel Fluorescent Spin Trap for the Detection of ROS with Subcellular Resolution. Appl Magn Reson 36, 133–147 (2009). https://doi.org/10.1007/s00723-009-0025-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-009-0025-3

Keywords

Navigation