Skip to main content
Log in

A 236 GHz Fe3+ EPR Study of Nanoparticles of the Ferromagnetic Room-Temperature Semiconductor Sn1−x Fe x O2 (x = 0.005)

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

High-frequency (236 GHz) electron paramagnetic resonance (EPR) studies of Fe3+ ions at 255 K are reported in a Sn1−x Fe x O2 powder with x = 0.005, which is a ferromagnetic semiconductor at room temperature. The observed EPR spectrum can be simulated reasonably well as the overlap of spectra due to four magnetically inequivalent high-spin (HS) Fe3+ ions (S = 5/2). The spectrum intensity is calculated, using the overlap I(BL) + (I(HS1) + I(HS2) + I(HS3) + I(HS4)) × exp(−0.00001B), where B is the magnetic field intensity in Gauss, I represents the intensity of an EPR line (HS1, HS2, HS3, HS4), and BL stands for the baseline (the exponential factor, as found by fitting to the experimental spectrum, is related to the Boltzmann population distribution of energy levels at 255 K, which is the temperature of the sample in the spectrometer). These high-frequency EPR results are significantly different from those at X-band. The large values of the zero-field splitting parameter (D) observed here for the four centers at the high frequency of 236 GHz are beyond the capability of X-band, which can only record spectra of ions with much smaller D values than those reported here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. E.J.H. Lee, C. Ribeiro, T.R. Giraldi, E. Longo, E.R. Leite, J.A. Varela, Appl. Phys. Lett. 84, 1745 (2004)

    Article  ADS  Google Scholar 

  2. N. Chiodini, A. Paleari, D. DiMartino, G. Spinolo, Appl. Phys. Lett. 81, 1702 (2002)

    Article  ADS  Google Scholar 

  3. P.G. Harrison, N.C. Lloyd, W. Daniell, J. Phys. Chem. B 102, 10672 (1998)

    Article  Google Scholar 

  4. S.-C. Lee, J.-H. Lee, T.-S. Oh, Y.-H. Kim, Sol. Energ. Mater. Sol. Cell 75, 481 (2003)

    Google Scholar 

  5. S.A. Pianaro, P.R. Bueno, E. Longo, J.A. Varela, J. Mater. Sci. Lett. 14, 692 (1995)

    Article  Google Scholar 

  6. E.A. Bondar, S.A. Gormin, I.V. Petrochenko, L.P. Shadrina, Opt. Spectrosc. 89, 892 (2000)

    Google Scholar 

  7. A. Punnoose, J. Hays, A. Thurber, M.H. Engelhard, R.K. Kukkadapu, C. Wang, V. Shutthanandan, S. Thevuthasan, Phys. Rev. B 72, 054402 (2005)

    Article  ADS  Google Scholar 

  8. G.A. Prinz, Science, 282, 1660 (1998); J. Magn. Magn. Mater. 200, 57 (1999)

  9. S.A. Chambers, R.F.C. Farrow, MRS Bull. 28, 729 (2003)

    Google Scholar 

  10. S.J. Pearton, C.R. Abernathy, M.E. Overberg, G.T. Thaler, D.P. Norton, N. Theodorpoulou, A.F. Hebard, Y.D. Park, F. Ren, J. Kim, L.A. Boatner, J. Appl. Phys. 93, 1 (2003)

    Google Scholar 

  11. N. Lebedeva, P. Kuivalainen, J. Appl. Phys. 93, 9845 (2003)

    Article  ADS  Google Scholar 

  12. J.M.D. Coey, A.P. Douvalis, C.B. Fitzgerald, M. Venkatesan, Appl. Phys. Lett. 84, 1332 (2004)

    Article  ADS  Google Scholar 

  13. S.K. Misra, S.I. Andronenko, K.M. Reddy, J. Hays, A. Thurber, A. Punnoose, J. Appl. Phys. 101, 09H120 (2007)

    Article  Google Scholar 

  14. A. Punnoose, K.M. Reddy, J. Hays, A. Thurber, S. Andronenko, S.K. Misra, Appl. Magn. Reson. (this issue)

  15. Y. Dusausoy, R. Ruck, J.M. Gaite, Phys. Chem. Miner. 15, 300 (1988)

    Article  ADS  Google Scholar 

  16. K. Nagata, A. Ishihara, J. Magn. Magn. Mater. 104–107, 1571 (1992)

  17. A. Punnoose, M.S. Seehra, J. van Tol, L.C. Brunel, J. Magn. Magn. Mater. 288, 168 (2005)

    Article  ADS  Google Scholar 

  18. A. Punnoose, M.S. Seehra, in EPR in the 21st Century, ed. by A. Kawamori, J. Yamauchi, H. Ohta (Elsevier Science, 2002), 162 pp

Download references

Acknowledgments

This research was supported by Natural Sciences and Engineering Research Council (NSERC), Canada (S.K. Misra); National Institutes of Health and National Center for Research Resources (NIH/NCRR) Grant P41RR016292, USA (D. Tipikin and J.H. Freed); and ARO grant W911NF-09-1-0051 and National Science Foundation (NSF) grants Division of Materials Research DMR-0449639 and DMR-0840227 (A. Punnoose), NSF-Idaho-Experimental Program to Stimulate Competitive Research (EPSCoR) Program, and NSF EPS-0447689 and DMR-0321051 grants (A. Punnoose).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushil K. Misra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Misra, S.K., Andronenko, S.I., Punnoose, A. et al. A 236 GHz Fe3+ EPR Study of Nanoparticles of the Ferromagnetic Room-Temperature Semiconductor Sn1−x Fe x O2 (x = 0.005). Appl Magn Reson 36, 291–295 (2009). https://doi.org/10.1007/s00723-009-0024-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-009-0024-4

Keywords

Navigation