Skip to main content
Log in

High-Field Dynamic Nuclear Polarization for Solid and Solution Biological NMR

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract.

Dynamic nuclear polarization (DNP) results in a substantial nuclear polarization enhancement through a transfer of the magnetization from electrons to nuclei. Recent years have seen considerable progress in the development of DNP experiments directed towards enhancing sensitivity in biological nuclear magnetic resonance (NMR). This review covers the applications, hardware, polarizing agents, and theoretical descriptions that were developed at the Francis Bitter Magnet Laboratory at Massachusetts Institute of Technology for high-field DNP experiments. In frozen dielectrics, the enhanced nuclear polarization developed in the vicinity of the polarizing agent can be efficiently dispersed to the bulk of the sample via 1H spin diffusion. This strategy has been proven effective in polarizing biologically interesting systems, such as nanocrystalline peptides and membrane proteins, without leading to paramagnetic broadening of the NMR signals. Gyrotrons have been used as a source of high-power (5–10 W) microwaves up to 460 GHz as required for the DNP experiments. Other hardware has also been developed allowing in situ microwave irradiation integrated with cryogenic magic-angle-spinning solid-state NMR. Advances in the quantum mechanical treatment are successful in describing the mechanism by which new biradical polarizing agents yield larger enhancements at higher magnetic fields. Finally, pulsed methods and solution experiments should play a prominent role in the future of DNP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abragam, A., Goldman, M.: Rep. Prog. Phys. 41, 395 (1978)

    Article  ADS  Google Scholar 

  • Onnes, K.H.: Leiden Commun. 108, 3–23 (1908)

    Google Scholar 

  • Bridgeman, P.W.: Collected Experimental Papers, vol. 3. Harvard University Press, Harvard (1964)

    Google Scholar 

  • Overhauser, A.W.: Phys. Rev. 92, 411–415 (1953)

    Article  MATH  ADS  Google Scholar 

  • Carver, T.P., Slichter, C.P.: Phys. Rev. 102, 975–980 (1956)

    Article  ADS  Google Scholar 

  • Abragam, A., Proctor, W.G.: C. R. Acad. Sci. 246, 2253 (1959)

    Google Scholar 

  • Afeworki, M., Mckay, R.A., Schaefer, J.: Macromolecules 25, 4084–4091 (1992)

    Article  Google Scholar 

  • Singel, D.J., Seidel, H., Kendrick, R.D., Yannoni, C.S.: J. Magn. Reson. 81, 145–161 (1989)

    Google Scholar 

  • Wind, R.A., Duijvestijn, M.J., Lugt, C.V.D., Manenschijn, A., Vriend, J.: Prog. Nucl. Magn. Reson. Spectrosc. 17, 33–67 (1985)

    Article  Google Scholar 

  • Dorn, H.C., Gitti, R., Tsai, K.H., Glass, T.E.: Chem. Phys. Lett. 155, 227–232 (1989)

    Article  ADS  Google Scholar 

  • Maly, T., Debelouchina, G.T., Bajaj, V.S., Mak-Jurkauskas, M.L., Sirigiri, J.R., Hu, K.-N., van der Wel, P.C.A., Herzfeld, J., Temkin, R.J., Griffin, R.G.: J. Chem. Phys. 128, 052211 (2008)

    Article  ADS  Google Scholar 

  • Rosay, M., Zeri, A.C., Astrof, N.S., Opella, S.J., Herzfeld, J., Griffin, R.G.: J. Am. Chem. Soc. 123, 1010–1011 (2001)

    Article  Google Scholar 

  • van der Wel, P.C.A., Hu, K.-N., Lewandoswki, J., Griffin, R.G.: J. Am. Chem. Soc. 128, 10840–10846 (2006)

    Article  Google Scholar 

  • Bajaj, V.S., Hornstein, M.K., Kreischer, K.E., Sirigiri, J.R., Woskov, P.P., Mak, M., Herzfeld, J., Temkin, R.J., Griffin, R.G.: J. Magn. Reson. 190, 86–114 (2007)

    Google Scholar 

  • Rosay, M., Lansing, J.C., Haddad, K.C., Bachovchin, W.W., Herzfeld, J., Temkin, R.J., Griffin, R.G.: J. Am. Chem. Soc. 125, 13626–13627 (2003)

    Article  Google Scholar 

  • Hu, K., Yu, Y.-Y., Swager, T., Griffin, R.G.: J. Am. Chem. Soc. 126, 10844–10845 (2004)

    Article  Google Scholar 

  • Song, C., Hu, K.-N., Swager, T.M., Griffin, R.G.: J. Am Chem. Soc. 128, 11385–11390 (2006)

    Article  Google Scholar 

  • Hall, D.A., Maus, D.C., Gerfen, G.J., Inati, S.J., Becerra, L.R., Dahlquist, F.W., Griffin, R.G.: Science 276, 930–932 (1997)

    Article  Google Scholar 

  • Weis, V., Bennati, M., Rosay, M., Bryant, J.A., Griffin, R.G.: J. Magn. Reson. 140, 293–299 (1999)

    Article  ADS  Google Scholar 

  • Becerra, L.R., Gerfen, G.J., Temkin, R.J., Singel, D.J., Griffin, R.G.: Phys. Rev. Lett. 71, 3561–3564 (1993)

    Article  ADS  Google Scholar 

  • Bloembergen, N., Purcell, E.M., Pound, R.V.: Phys. Rev. 73, 679–712 (1948)

    Article  ADS  Google Scholar 

  • Long, H.W., Tycko, R.: J. Am. Chem. Soc. 120, 7039–7048 (1998)

    Article  Google Scholar 

  • Rosay, M., Weis, V., Kreischer, K.E., Temkin, R.J., Griffin, R.G.: J. Am. Chem. Soc. 124, 3214–3215 (2002)

    Article  Google Scholar 

  • Ernst, R.R., Bodenhausen, G., Wokaun, A.: Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Clarendon, Oxford (1991)

    Google Scholar 

  • Pines, A., Gibby, M.G., Waugh, J.S.: J. Chem. Phys. 59, 569–590 (1973)

    Article  ADS  Google Scholar 

  • Nelson, R., Saway, M.R., Balbirnie, M., Madsen, A.O., Riekel, C., Grothe, R., Eisenberg, D.: Nature 435, 773–778 (2005)

    Article  ADS  Google Scholar 

  • Sawaya, M.R., Sambashivan, S., Nelson, R., Ivanova, M.I., Sievers, S.A., Apostol, M.I., Thompson, M.J., Balbirnie, M., Wiltzius, J.J.W., McFarlane, H.T., Madsen, A.O., Riekel, C., Eisenberg, D.: Nature 447, 453–457 (2007)

    Article  ADS  Google Scholar 

  • van der Wel, P.C.A., Lewandoswki, J., Griffin, R.G.: J. Am. Chem. Soc. 128, 10840–10846 (2007)

    Article  Google Scholar 

  • Mak-Jurkauskas, M.L., Bajaj, V.S., Hornstein, M.K., Belenky, M., Temkin, R.J., Griffin, R.G., Herzfeld, J.: Proc. Natl. Acad. Sci. USA 105, 883–888 (2008)

    Article  ADS  Google Scholar 

  • Wind, R.A., Anthonio, F.E., Duijvestijn, M.J., Smidt, J., Trommel, J., Vette, G.M.C.D.: J. Magn. Reson. 52, 424–434 (1983)

    Google Scholar 

  • McKay, R.A.: US patent nr. 4, 446, 431 (1984)

  • Allen, P.J., Creuzet, F., de Groot, H.J.M., Griffin, R.G.: J. Magn. Reson. 92, 614–617 (1991)

    Google Scholar 

  • Kartikeyan, M.V., Borie, E., Thumm, M.K.A.: Gyrotrons: High Power Microwave Sources and Technologies, p. 227. Springer, New York (2004)

    Google Scholar 

  • Nusinovich, G.S.: Introduction to the Physics of Gyrotrons, p. 335. Johns Hopkins University Press, Baltimore, Md. (2004)

    Google Scholar 

  • Hornstein, M.K., Bajaj, V.S., Griffin, R.G., Temkin, R.J.: IEEE Trans. Plasma Sci. 34, 524–533 (2006)

    Article  ADS  Google Scholar 

  • Woskov, P.W., Bajaj, V.S., Hornstein, M.K., Temkin, R.J., Griffin, R.G.: IEEE Trans. Microwave Theory Tech. 53, 1863–1869 (2005)

    Article  Google Scholar 

  • Kreischer, K.E., Farrar, C., Griffin, R.G., Temkin, R.J., Vieregg, J., in: Lombardo, L. (ed.) Proceedings of 24th International Conference on Infrared and Millimeter Waves. UC Davis, Monterey, Calif. (1999)

    Google Scholar 

  • Hwang, C.F., Hill, D.A.: Phys. Rev. Lett. 18, 110–112 (1967)

    Article  ADS  Google Scholar 

  • Hwang, C.F., Hill, D.A.: Phys. Rev. Lett. 19, 1011–1013 (1967)

    Article  ADS  Google Scholar 

  • Kessenikh, A.V., Luschikov, V.L., Manenkov, A.A., Taran, Y.V.: Sov. Phys. Solid State 5, 321–329 (1963)

    Google Scholar 

  • Kessenikh, A.V., Manenkov, A.A., Pyatnitskii, G.I.: Sov. Phys. Solid State 6, 641–643 (1964)

    Google Scholar 

  • Wollan, D.S.: Phys. Rev. B 13, 3671–3685 (1976)

    Article  ADS  Google Scholar 

  • Atsarkin, V.A.: Sov. Phys. Solid State 21, 725–744 (1978)

    Google Scholar 

  • Hu, K.: Polarizing Agents for High-Frequency Dynamic Nuclear Polarization – Development and Applications. Massachusetts Institute of Technology, Cambridge, Mass. (2006)

    Google Scholar 

  • Becerra, L.R., Gerfen, G.J., Temkin, R.J., Singel, D.J., Griffin, R.G.: Phys. Rev. Lett. 71, 3561–3564 (1993)

    Article  ADS  Google Scholar 

  • Bajaj, V.S., Farrar, C.T., Hornstein, M.K., Mastovsky, I., Vieregg, J., Bryant, J., Elena, B., Kreischer, K.E., Temkin, R.J., Griffin, R.G.: J. Magn. Reson. 160, 85–90 (2003)

    Article  ADS  Google Scholar 

  • Hu, K.-N., Yu, H.-H., Swager, T.M., Griffin, R.G.: J. Am. Chem. Soc. 126, 10844–10845 (2004)

    Article  Google Scholar 

  • Abragam, A., Goldman, M.: Nuclear Magnetism: Order and Disorder. Clarendon, Oxford (1982)

    Google Scholar 

  • Goldman, M.: Spin Temperature and Nuclear Magnetic Resonance in Solids. Oxford University Press, London (1970)

    Google Scholar 

  • Henstra, A., Dirksen, P., Wenckebach, W.T.: Phys. Lett. A 134, 134 (1988)

    Article  ADS  Google Scholar 

  • Hu, K.-N., Song, C., Yu, H.-H., Swager, T.M., Griffin, R.G.: J. Chem. Phys. 128, 052302 (2008)

    Article  ADS  Google Scholar 

  • Hu, K.-N., Bajaj, V.S., Rosay, M.M., Griffin, R.G.: J. Chem. Phys. 126, 044512 (2007)

    Article  ADS  Google Scholar 

  • Bennett, A.E., Rienstra, C.M., Auger, M., Lakshmi, K.V., Griffin, R.G.: J. Chem. Phys. 103, 6951 (1995)

    Article  ADS  Google Scholar 

  • Carver, T.R., Slichter, C.P.: Phys. Rev. 92, 212–213 (1953)

    Article  ADS  Google Scholar 

  • Joo, C.-G., Hu, K.-N., Bryant, J.A., Griffin, R.G.: J. Am. Chem. Soc. 128, 9428–9432 (2006)

    Article  Google Scholar 

  • Ardenkjaer-Larsen, J.H., Fridlund, B., Gram, A., Hansson, G., Hansson, L., Lerche, M.H., Servin, R., Thaning, M., Golman, K.: Proc. Natl. Acad. Sci. USA 100, 10158–10163 (2003)

    Article  ADS  Google Scholar 

  • Frydman, L., Scherf, T., Lupulescu, A.: Proc. Natl. Acad. Sci. USA 99, 15858–15862 (2002)

    Article  ADS  Google Scholar 

  • Weis, V., Bennati, M., Rosay, M., Griffin, R.G.: J. Chem. Phys. 113, 6795–6802 (2000)

    Article  ADS  Google Scholar 

  • Weis, V., Griffin, R.G.: Solid State Nucl. Magn. Reson. 29, 105–117 (2006)

    Article  Google Scholar 

  • Pines, A., Gibby, M.G., Waugh, J.S.: J. Chem. Phys. 56, 1776 (1972)

    Article  ADS  Google Scholar 

  • Hartmann, S.R., Hahn, E.L.: Phys. Rev. 128, 2042–2053 (1962)

    Article  MATH  ADS  Google Scholar 

  • Bloembergen, N., Sorokin, P.P.: Phys. Rev. 110, 865–875 (1958)

    Article  ADS  Google Scholar 

  • Wind, R.A., Lock, H.: Adv. Magn. Opt. Reson. 15, 51–77 (1990)

    Google Scholar 

  • Farrar, C.T., Hall, D.A., Gerfen, G.J., Rosay, M., Ardenkjaer-Larsen, J.H., Griffin, R.G.: J. Magn. Reson. 144, 134–141 (2000)

    Article  ADS  Google Scholar 

  • Jeschke, G.: Chem. Phys. Lett. 301, 524–530 (1999)

    Article  ADS  Google Scholar 

  • Jeschke, G., Schweiger, A.: Mol. Phys. 88, 355–383 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Authors' address: Robert G. Griffin, Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnes, A., De Paëpe, G., van der Wel, P. et al. High-Field Dynamic Nuclear Polarization for Solid and Solution Biological NMR. Appl Magn Reson 34, 237–263 (2008). https://doi.org/10.1007/s00723-008-0129-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-008-0129-1

Keywords

Navigation