Skip to main content
Log in

Application of Hyperpolarized Magnetic Resonance in the Study of Cardiac Metabolism

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract.

The application of magnetic resonance (MR) for metabolic imaging and spectroscopy has been limited by the intrinsically low sensitivity and natural abundance of 13C. Recently a method has been developed in which solid-state, dynamically polarized MR-active nuclei can be dissolved to obtain a solution polarized in excess of 20%. When used in concert with MR spectroscopy, this method of hyperpolarization provides the MR signal necessary to detect low-abundance molecules, enabling visualization of the substrate uptake and in vivo metabolism in real time. This study utilized hyperpolarized [1-13C]pyruvate as a metabolic tracer to monitor cardiac metabolism in healthy rats in vivo. The conversion of [1-13C]pyruvate to [1-13C]lactate, [1-13C]alanine and bicarbonate (H13CO3 ) was observed with high signal-to-noise ratio at 1 s temporal resolution. The acquired spectra demonstrated that injection of hyperpolarized [1-13C]pyruvate elicited a consistent metabolic response in vivo and displayed instantaneous information regarding the evolution of the metabolite pools of each product of pyruvate. We have demonstrated the feasibility of applying hyperpolarized MR to the study of cardiac metabolism, with a view to detecting the alterations in substrate utilization that occur in heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey, I.A., Gadian, D.G., Matthews, P.M., Radda, G.K., Seeley, P.J.: FEBS Lett. 123, 315–318 (1981)

    Article  Google Scholar 

  • Lloyd, S., Brocks, C., Chatham, J.C.: Am. J. Physiol. Heart. Circ. Physiol. 285, H163–H172 (2003)

    Google Scholar 

  • Malloy, C.R., Sherry, A.D., Jeffrey, F.M.: J. Biol. Chem. 263, 6964–6971 (1988)

    Google Scholar 

  • Sherry, A.D., Nunnally, R.L., Peshock, R.M.: J. Biol. Chem. 260, 9272–9279 (1985)

    Google Scholar 

  • Sherry, A.D., Malloy, C.R., Zhao, P., Thompson, J.R.: Biochemistry 31, 4833–4837 (1992)

    Article  Google Scholar 

  • Chatham, J.C., Seymour, A.M.: Cardiovasc. Res. 55, 104–112 (2002)

    Article  Google Scholar 

  • Chatham, J.C., Forder, J.R.: Am. J. Physiol. 270, H224–H229 (1996)

    Google Scholar 

  • Chatham, J.C., Forder, J.R., Glickson, J.D., Chance, E.M.: J. Biol. Chem. 270, 7999–8008 (1995)

    Article  Google Scholar 

  • Garlick, P.B., Pritchard, R.D.: NMR Biomed. 6, 84–88 (1993)

    Article  Google Scholar 

  • Malloy, C.R., Sherry, A.D., Jeffrey, F.M.: FEBS Lett. 212, 58–62 (1987)

    Article  Google Scholar 

  • Ziegler, A., Zaugg, C.E., Buser, P.T., Seelig, J., Künnecke, B.: NMR Biomed. 15, 222–234 (2002)

    Article  Google Scholar 

  • Malloy, C.R., Thompson, J.R., Jeffrey, F.M., Sherry, A.D.: Biochemistry 29, 6756–6761 (1990)

    Article  Google Scholar 

  • Abragam, A., Goldman, M.: Rep. Prog. Phys. 41, 395–467 (1978)

    Article  ADS  Google Scholar 

  • Ardenkjaer-Larsen, J.H., Fridlund, B., Gram, A., Hansson, G., Hansson L., Lerche, M.H., Servin, R., Thaning, M., Golman, K.: Proc. Natl. Acad. Sci. USA 100, 10158–10163 (2003)

    Article  ADS  Google Scholar 

  • Golman, K., Ardenkjaer-Larsen, J.H., Petersson, J.S., Mansson, S., Leunbach, I.: Proc. Natl. Acad. Sci. USA 100, 10435–10439 (2003)

    Article  ADS  Google Scholar 

  • Golman, K., Olsson, L.E., Axelsson, O., Mansson, S., Karlsson, M., Petersson, J.S.: Br. J. Radiol. 76, S118–S127 (2003)

    Article  Google Scholar 

  • Golman, K., in't Zandt, R., Thaning, M.: Proc. Natl. Acad. Sci. USA 103, 11270–11275 (2006)

    Article  ADS  Google Scholar 

  • Kerbey, A.L., Randle, P.J., Cooper, R.H., Whitehouse, S., Pask, H.T., Denton, R.M.: Biochem. J. 154, 327–348 (1976)

    Google Scholar 

  • Dennis, S.C., Padmas, A., DeBuysere, M.S., Olson, M.S.: J. Biol. Chem. 254, 1252–1258 (1979)

    Google Scholar 

  • Leong, H.S., Brownsey, R.W., Kulpa, J.E., Allard, M.F.: Comp. Biochem. Physiol. A Mol. Integr. Physiol. 135, 499–513 (2003)

    Article  Google Scholar 

  • Mallet, R.T.: Proc. Soc. Exp. Biol. Med. 223, 136–148 (2000)

    Article  Google Scholar 

  • Mallet, R.T., Sun, J.: Cardiovasc. Res. 42, 149–161 (1999)

    Article  Google Scholar 

  • Cassidy, P.J., Schneider, J.E., Grieve, S.M., Lygate, C., Tyler, D., Neubauer, S., Clarke, K., in: ISMRM 13th Meeting Proceedings, p. 2541. International Society for Magnetic Resonance in Medicine, Berkeley, Calif. (2005)

    Google Scholar 

  • Naressi, A., Couturier, C., Castang, I., de Beer, R., Graveron-Demilly, D.: Comput. Biol. Med. 31, 269–286 (2001)

    Article  Google Scholar 

  • Naressi, A., Couturier, C., Devos, J.M., Janssen, M., Mangeat, C., de Beer, R., Graveron-Demilly, D.: MAGMA 12, 141–152 (2001)

    Article  Google Scholar 

  • Day, S.E., Kettunen, M.I., Gallagher, F.A., Hu, D.-E., Lerche, M., Wolber, J., Golman, K., Ardenkjaer-Larsen, J.H., Brindle, K.M.: Nat. Med. 13, 1382–1387 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Authors' address: Damian J. Tyler, Cardiac Metabolism Research Group, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford OX1 3PT, United Kingdom

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyler, D., Schroeder, M., Cochlin, L. et al. Application of Hyperpolarized Magnetic Resonance in the Study of Cardiac Metabolism. Appl Magn Reson 34, 523–531 (2008). https://doi.org/10.1007/s00723-008-0115-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-008-0115-7

Keywords

Navigation