Skip to main content
Log in

EPR Study of Fe3+- and Ni2+-Doped Macroporous CaSiO3 Ceramics

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract.

Thermally stable macroporous CaSiO3, Fe3+- and Ni2+-doped (0.5 to 5 mol%) ceramics have been prepared by solution combustion process by mixing respective metal nitrates (oxidizers), fumed silica. Diformol hydrazine is used as a fuel. The combustion products were identified by their X-ray diffraction and thermal gravimetry/differential thermal analysis. Single phases of β-CaSiO3 and α-CaSiO3 were observed at 950 and 1200 °C, respectively. The phase transition temperatures of combustion-derived CaSiO3 were found to be lower compared to those obtained via solid-state reaction method. It is interesting to note that with an increase in the calcination temperature the samples become more porous with an increase in the pore diameter from 0.2 to 8 µm. The electron paramagnetic resonance (EPR) spectrum of Fe3+ ions in CaSiO3 exhibits a weak signal at g = 4.20 ± 0.1 followed by an intense signal at g = 2.0 ± 0.1. The signal at g = 4.20 is ascribed to isolated Fe3+ ions at rhombic site. The signal at g = 2.0 is due to Fe3+ coupled together with dipolar interaction. In Ni2+-doped CaSiO3 ceramics the EPR spectrum exhibits a symmetric absorption at g = 2.23 ± 0.1. This deviation from the free electron g-value is ascribed to octahedrally coordinated Ni2+ ions with moderately high spin–orbit coupling. The number of spins participating in resonance and the paramagnetic susceptibilities have been evaluated from EPR data as a function of Fe3+ as well as Ni2+ content. The effect of alkali ions (Li, Na and K) on the EPR spectra of these ceramics has also been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., Beck, J.S.: Nature 359, 710 (1992)

    Article  ADS  Google Scholar 

  • Yang, P., Zhao, D., Margolese, D.I., Bates, B.F., Stucky, G.D.: Nature 396, 152 (1998)

    Article  ADS  Google Scholar 

  • Zhao, D., Feng, F., Quo, Q., Melosh, N., Fredrickson, G.H., Chmelka, B.F., Stucky, G.D.: Science 279, 548 (1999)

    Article  ADS  Google Scholar 

  • Corbin, S.F., Apte, P.S.: J. Am. Ceram. Soc. 82, 693–701 (1999)

    Article  Google Scholar 

  • Chandrappa, G.T., Steunou, N., Livage J.: Nature, 416, 702 (2002)

    Article  ADS  Google Scholar 

  • Shevchenko, Ya.V.: Introduction to Engineering Ceramics. Nauka, Moscow (1993)

    Google Scholar 

  • Shevchenko, Ya.V., Barinov, S.M.: Engineering Ceramics. Nauka, Moscow (1993)

    Google Scholar 

  • Boccaccini, A.R., Petitmermel, M., Wintermantel, E.: J. Am. Ceram. Soc. 76, 75 (1997)

    Google Scholar 

  • Kingsley, J.J., Patil, K.C.: Mater. Lett. 6, 427 (1988)

    Article  Google Scholar 

  • Ainsworth, C., Jones, R.: J. Am. Chem. Soc. 77, 621 (1995)

    Article  Google Scholar 

  • Chandrappa, G.T., Chandran, R.G., Patil, K.C.: Int. J. Self-Propag. High Temp. Synthes. 4, 183 (1995)

    Google Scholar 

  • Yun, Y.H., Yun, S.D., Park, H.R., Lee, Y.K., Youn, Y.N.: J. Mater. Synth. Process. 10, 205 (2002)

    Article  Google Scholar 

  • Lin, K., Chang, J., Zeng, Y., Qian, W.: Mater. Lett. 58, 2109 (2004)

    Article  Google Scholar 

  • Yoshizawa, J., Matushita, H., Iwamoto, K., Katsui, A.: J. Adv. Sci. 13, 52 (2001)

    Google Scholar 

  • Kanzaki, M., Stebbins, J.F., Xue, X.: Geophys. Res. Lett. 18, 463 (1991)

    Article  ADS  Google Scholar 

  • Klug, H., Alexander L.: X-Ray Diffraction Procedures, p. 491. Wiley, New York (1962)

    Google Scholar 

  • Fan, X., Wang, M., Hong, X., Qian, G.: J. Phys.: Condens. Matter 9, 3479 (1997)

    Article  ADS  Google Scholar 

  • Ming, T.J., Lin, R.Y., Ko, Y.H.: Am. Ceram. Soc. Bull. 70, 1167 (1991)

    Google Scholar 

  • Brumauer, S., Emmete, P.H., Teller, E.: J. Am. Chem. Soc. 66, 309 (1938)

    Article  ADS  Google Scholar 

  • Abragam, A., Bleaney, B.: Electron Paramagnetic Resonance of Transition Ions. Clarendon, Oxford (1970)

    Google Scholar 

  • Pilbrow, J.R.: Transition Ion Electron Paramagnetic Resonance. Clarendon, Oxford (1990)

    Google Scholar 

  • Mabbs, F.E., Collison, D.: Electron Paramagnetic Resonance of d Transition-Metal Compounds. Elsevier, Amsterdam (1992)

    Google Scholar 

  • Weil, J.A., Bolton, J.R., Wertz, J.E.: Electron Paramagnetic Resonance: Elementary Theory and Practical Applications. Wiley, New York (1994)

    Google Scholar 

  • Poole, C.P. Jr., Farach, H.A. (eds.): Handbook of Electron Spin Resonance. American Institute of Physics, New York (1994)

    Google Scholar 

  • Poole, C.P. Jr., Farach, H.A. (eds.): Handbook of Electron Spin Resonance, vol. 2. AIP Press, New York (1999)

    Google Scholar 

  • Stevens, K.W.H.: Magnetic Ions in Crystals. Princeton University Press, Princeton (1997)

    Google Scholar 

  • Rudowicz, C.: Magn. Reson. Rev. 13, 1 (1987)

    Google Scholar 

  • Rudowicz, C.: Magn. Reson. Rev. 13, 335 (1988)

    Google Scholar 

  • Rudowicz, C.: J. Phys.: Condens. Matter 12, L417 (2000)

    Article  ADS  Google Scholar 

  • Rudowicz, C., Misra S.K.: Appl. Spectrosc. Rev. 36, 11 (2001)

    Article  ADS  Google Scholar 

  • Bleaney, B., Stevens, K.W.H.: Rep. Prog. Phys. 16, 108 (1953)

    Article  ADS  Google Scholar 

  • Gibson, J.F., in: Norman, R.O.C. (ed.) Electron Spin Resonance, vol. 3, pp. 90–133. Specialist Periodical Reports. Chemical Society, London (1976)

    Chapter  Google Scholar 

  • Rudowicz, C., Bramely, R.: J. Chem. Phys. 83, 5192 (1985)

    Article  ADS  Google Scholar 

  • Rudowicz, C.: J. Chem. Phys. 84, 5045 (1986)

    Article  ADS  Google Scholar 

  • Rudowicz, C.: Mol. Phys. 74, 1159 (1991)

    Article  ADS  Google Scholar 

  • Gaite, J.M., Michoulier, J.: Crystallographie 93, 341 (1970)

    Google Scholar 

  • Castner, T., Newell, G.S. Jr., Holton, W.C., Slichter, C.P.: J. Chem. Phys. 32, 668 (1960)

    Article  ADS  Google Scholar 

  • Burzo, E., Chipara, M., Ungur, D., Ardelean, I.: Phys. Status Solidi 124, K117 (1984)

    Article  Google Scholar 

  • Kishore, N., Bansal, T.K., Kamal, R., Mendiratta, R.G.: Phys. Chem. Glasses 25, 52 (1984)

    Google Scholar 

  • Yang, H., Prewitt, C.T.: Am. Mineral. 84, 929 (1999)

    Google Scholar 

  • Yeom, T.H., Rudowicz, C., Choh, S.H., McGavin, D.G.: Phys. Status Solidi B 198, 839 (1996)

    Article  Google Scholar 

  • Pilbrow, J.R., Lowrey, M.R.: Rep. Prog. Phys. 43, 434 (1980)

    Article  ADS  Google Scholar 

  • Rudowicz, C., Qin, J.: J. Lumin. 110, 39 (2004)

    Article  Google Scholar 

  • Rao, B.G., Rao, K.J.: Chem. Phys. 102, 121 (1986)

    Article  ADS  Google Scholar 

  • Ashcroft, N.W., Mermin, N.D.: Solid State Physics, p. 656. Harcourt Brace College Publishers, New York (1976)

    Google Scholar 

  • Sreedhar, B., Sumalatha, C., Kojima, K.: J. Mater. Sci. 31, 1445 (1996)

    Article  ADS  Google Scholar 

  • Lever, A.B.P.: Inorganic Electronic Spectroscopy. Elsevier, Ansterdam (1968)

    Google Scholar 

  • Figgis, B.N.: Introduction to Ligand Fields. Wiley Eastern, New Delhi (1976)

    Google Scholar 

  • Wong, J., Angell, C.A.: Glass Structure by Spectroscopy. Marcel Dekker, New York (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Authors' address: R. P. Sreekanth Chakradhar, Glass Technology Laboratory, Central Glass and Ceramic Research Institute, Kolkata 700032, India

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakradhar, R., Nagabhushana, B., Chandrappa, G. et al. EPR Study of Fe3+- and Ni2+-Doped Macroporous CaSiO3 Ceramics. Appl Magn Reson 33, 137–152 (2008). https://doi.org/10.1007/s00723-008-0060-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-008-0060-5

Keywords

Navigation