Skip to main content
Log in

A Comparative ESR Study on Blood and Tissue Nitric Oxide Concentration during Renal Ischemia-Reperfusion Injury

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract.

Electron paramagnetic resonance (EPR) spin trapping technology is a sensitive and unambiguous method for detection of nitric oxide (NO). Due to the short lifetime, NO must be trapped before EPR measurement. There are two EPR spin trapping techniques used currently, including the detections of EPR signals of diethyldithiocarbamate-iron-nitric oxide (DETC2-Fe2+-NO) and nitrosyl hemoglobin (HbNO). In this study, we firstly investigated the kinetics of the EPR signal of DETC2-Fe2+-NO in normal and ischemia-reperfused kidneys. In normal rat kidneys, the signal of DETC2-Fe2+-NO was found at 5 min after the spin trappers Fe2+/DETC were administrated, the peak concentration was at 15 min and the period with relatively stable signal intensity was at the time range from 15 to 70 min. In the ischemia-reperfused rat kidneys, the signal of DETC2-Fe2+-NO was increased at 30 min of ischemia and decreased at 60 min of ischemia after the occlusion of renal artery (corresponding to the time course of 60 and 90 min after Fe2+/DETC injection respectively). We then investigated the EPR signal of HbNO in blood. No characteristic HbNO signal was found in the rats of the sham control and 30 min of ischemia. An HbNO signal occurred in the rats exposed to 60 min of ischemia and it became pronounced with increased duration of reperfusion. The signal intensity reached a plateau at 150 min of reperfusion. The results suggest that the DETC2-Fe2+-NO signal can be only suitable for the NO measurement in the short-term ischemia-reperfusion model, whereas the HbNO signal can be applied to represent NO in the relatively long-term ischemia-reperfusion model. In addition, NG-nitro-L-arginine (L-NAME) and allopurinol were used to identify the source of NO. By detecting the HbNO signal, we demonstrated that the activation of xanthine oxidase is an important source of NO formation at the long-term period of ischemia and reperfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baylis, C., Harton, P., Engels, K.: J. Am. Soc. Nephrol. 1, 875–881 (1990)

    Google Scholar 

  • Zatz, R., de Nucci, G.: Am. J. Physiol. 261, F360–F363 (1991)

    Google Scholar 

  • Moncada, S., Palmer, R.M., Higgs, E.A.: Pharmacol. Rev. 43, 109–142 (1991)

    Google Scholar 

  • Moncada, S., Higgs, E.A.: Eur. J. Clin. Invest. 21, 361–374 (1991)

    Article  Google Scholar 

  • Romero, J.C., Strick, D.M.: Curr. Opin. Nephrol. Hypertens. 2, 114–121 (1993)

    Article  Google Scholar 

  • Bachmann, S., Mundel, P.: Am. J. Kidney Dis. 24, 112–129 (1994)

    Google Scholar 

  • Jeong, G.Y., Chung, K.Y., Lee, W.J., Kim, Y.S., Sung, S.H.: Transplant Proc. 36, 1943–1945 (2004)

    Article  Google Scholar 

  • Rodriguez-Pena, A., Garcia-Criado, F.J., Eleno, N., Arevalo, M., Lopez-Novoa, J.M.: Am. J. Transplant. 4, 1605–1613 (2004)

    Article  Google Scholar 

  • Xu, T., Chen, X., Wang, X.F., Huang, X.B., Qu, X.K., Ye, H.Y., Zhang, X.D., Hou, S.K., Zhu, J.C.: Chin. Med. J. 117, 1552–1557 (2004)

    Google Scholar 

  • Wang, P., Zweier, J.L.: J. Biol. Chem. 271, 29223–29230 (1996)

    Article  Google Scholar 

  • Dirnagl, U., Lindauer, U., Them, A., Schreiber, S., Pfister, H.W., Koedel, U., Reszka, R., Freyer, D., Villringer, A.: J. Cereb. Blood Flow Metab. 15, 929–940 (1995)

    Google Scholar 

  • Zhao, B., Shen, J., Li, M., Wan, Q., Xin, W.: Biochim. Biophys. Acta 1315, 131–137 (1996)

    Google Scholar 

  • Walker, L.M., Walker, P.D., Imam, S.Z., Ali, S.F., Mayeux, P.R.: J. Pharmacol. Exp. Ther. 295, 417–422 (2000)

    Google Scholar 

  • Lui, S.L., Chan, L.Y., Zhang, X.H., Zhu, W., Chan, T.M., Fung, P.C., Lai, K.N.: Nephrol. Dial. Transplant. 16, 1577–1582 (2001)

    Article  Google Scholar 

  • Oehlschlager, S., Albrecht, S., Hakenberg, O.W., Manseck, A., Froehner, M., Zimmermann, T., Wirth, M.P.: Luminescence 17, 130–132 (2002)

    Article  Google Scholar 

  • Saito, M., Miyagawa, I.: Urol. Res. 28, 141–146 (2000)

    Article  Google Scholar 

  • Yu, L., Gengaro, P.E., Niederberger, M., Burke, T.J., Schrier, R.W.: Proc. Natl. Acad. Sci. USA 91, 1691–1695 (1994)

    Article  ADS  Google Scholar 

  • Okamoto, M., Tsuchiya, K., Kanematsu, Y., Izawa, Y., Yoshizumi, M., Kagawa, S., Tamaki, T.: Am. J. Physiol. Renal Physiol. 288, F182–F187 (2005)

    Article  Google Scholar 

  • Tsuchiya, K., Takasugi, M., Minakuchi, K., Fukuzawa, K.: Free Radic. Biol. Med. 21, 733–737 (1996)

    Article  Google Scholar 

  • Vanin, A.F., Mordvintcev, P.I., Hauschildt, S., Mulsch, A.: Biochim. Biophys. Acta 1177, 37–42 (1993)

    Article  Google Scholar 

  • Shen, J., Wang, J., Zhao, B., Hou, J., Gao, T., Xin, W.: Biochim. Biophys. Acta 1406, 228–236 (1998)

    Google Scholar 

  • Shutenko, Z., Henry, Y., Pinard, E., Seylaz, J., Potier, P., Berthet, F., Girard, P., Sercombe, R.: Biochem. Pharmacol. 57, 199–208 (1999)

    Article  Google Scholar 

  • Schechter, A.N., Gladwin, M.T.: N. Engl. J. Med. 348, 1483–1485 (2003)

    Article  Google Scholar 

  • Pawloski, J.R., Hess, D.T., Stamler, J.S.: Nature 409, 622–626 (2001)

    Article  ADS  Google Scholar 

  • Eriksson, L.E.: Biochem. Biophys. Res. Commun. 203, 176–181 (1994)

    Article  Google Scholar 

  • Yonetani, T., Tsuneshige, A., Zhou, Y., Chen, X.: J. Biol. Chem. 273, 20323–20333 (1998)

    Article  Google Scholar 

  • Kumura, E., Yoshimine, T., Iwatsuki, K.I., Yamanaka, K., Tanaka, S., Hayakawa, T., Shiga, T., Kosaka, H.: Am. J. Physiol. 270, C748–C752 (1996)

    Google Scholar 

  • Samouilov, A., Kuppusamy, P., Zweier, J.L.: Arch. Biochem. Biophys. 357, 1–7 (1998)

    Article  Google Scholar 

  • Millar, T.M., Stevens, C.R., Benjamin, N., Eisenthal, R., Harrison, R., Blake, D.R.: FEBS Lett. 427, 225–228 (1998)

    Article  Google Scholar 

  • Ren, J.Y., Chang, C.Q., Fung, P.C., Shen, J.G., Chan, F.H.: J. Magn. Reson. 166, 82–91 (2004)

    Article  ADS  Google Scholar 

  • Hyvarinen, A.: IEEE Trans. Neural Networks 10, 626–634 (1999)

    Article  Google Scholar 

  • Hurri, J., Gävert, H., Särelä, J., Hyvärinen, A.: FastICA MATLAB package, http://www.cis.hut.fi/projects/ica/fastica

  • Beckman, J.S., Beckman, T.W., Chen, J., Marshall, P.A., Freeman, B.A.: Proc. Natl. Acad. Sci. USA 87, 1620–1624 (1990)

    Article  ADS  Google Scholar 

  • Zweier, J.L., Kuppusamy, P., Williams, R., Rayburn, B.K., Smith, D., Weisfeldt, M.L., Flaherty, J.T.: J. Biol. Chem. 264, 18890–18895 (1989)

    Google Scholar 

  • Zweier, J.L., Wang, P., Samouilov, A., Kuppusamy, P.: Nat. Med. 1, 804–809 (1995)

    Article  Google Scholar 

  • Gow, A.J., Stamler, J.S.: Nature 391, 169–173 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Authors' address: Jiangang Shen, School of Chinese Medicine, University of Hong Kong, 10 Sassoon Road, Hong Kong SAR, China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, J., Fung, P., Chang, C. et al. A Comparative ESR Study on Blood and Tissue Nitric Oxide Concentration during Renal Ischemia-Reperfusion Injury. Appl Magn Reson 32, 243–255 (2007). https://doi.org/10.1007/s00723-007-0024-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-007-0024-1

Keywords

Navigation