Skip to main content
Log in

Pathogenese der Uveitis

Pathogenesis of uveitis

  • themenschwerpunkt
  • Published:
Spektrum der Augenheilkunde Aims and scope Submit manuscript

Zusammenfassung

Uveitis als Entzündung des inneren Auges kann verschiedene Ursachen haben: Am häufigsten ist in Europa die Autoimmunität, während Trauma, Infektion oder Masquerade-Syndrome seltener sind. In diesem Artikel werden die aktuellen Kenntnisse zur Pathogenese der autoimmunen Uveitis zusammengefasst. Das Immunprivileg des Auges verhindert die unmittelbare Aktivierung der Immunsystems vor Ort, stattdessen wird eine extraokuläre Aktivierung mit Augenprotein-ähnlichen Umweltantigenen (antigene Mimikry) postuliert, die dann von T‑Zellen mit okulären Autoantigenen verwechselt werden. Die T‑Zellen rekrutieren die Entzündungszellen, die für die Gewebsdestruktion verantwortlich sind, in das Auge. T‑Helfer-1(Th1)- und Th17-Zellen, die okuläre Autoantigene erkennen, spielen die Hauptrolle bei der Uveitis, diese können im Auge auch zu Th1/Th17-Mischtypen oder sogar zu regulatorischen Zellen differenzieren. Es gibt genetische Assoziationen mit verschiedenen Uveitistypen, vor allem mit HLA-Klasse-I-Molekülen. Es wurden aber auch zahlreiche andere Gene, die die Immunantwort beeinflussen, gefunden. Das Mikrobiom, das eine maßgebliche Rolle als „Trainingspartner“ für Zellen des Immunsystems spielt, wird ebenfalls als möglicher Auslöser für Uveitis diskutiert, entweder durch antigene Mimikry von Bakterienmolekülen, die okuläre Autoantigenmoleküle imitieren, oder die Störung der Balance des Immunsystems.

Summary

Uveitis, an inflammation of the inner eye, can have various causes: autoimmunity is the most common in Europe, while trauma, infection, or masquerade syndromes are less common. This article summarizes the current knowledge on the pathogenesis of autoimmune uveitis. The immune privilege of the eye prevents the local activation of the immune system; instead, it is postulated that there is extraocular activation with environmental antigens resembling ocular protein (antigenic mimicry), which are then mistaken for ocular autoantigens by T cells. The T cells recruit the inflammatory cells responsible for tissue destruction into the eye. T helper (Th)-1 and Th17 cells that recognize ocular autoantigens play a major role in uveitis; these can also differentiate in the eye into Th1/Th17 mixed types or even into regulatory cells. There are genetic associations with various types of uveitis, most notably with HLA class I molecules. However, numerous other genes that influence the immune response have also been found. The microbiome, which plays an instrumental role as a “training partner” for cells of the immune system, is also discussed as a possible trigger for uveitis, either through antigenic mimicry of bacterial molecules similar to ocular autoantigens or by causing an imbalance of the immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Jabs DA, Nussenblatt RB, Rosenbaum JT. Standardization of uveitis nomenclature for reporting clinical data. Results of the First International Workshop. Am J Ophthalmol. 2005;140(3):509–16.

    Article  PubMed  Google Scholar 

  2. Mochizuki M, Kuwabara T, McAllister C, Nussenblatt RB, Gery I. Adoptive transfer of experimental autoimmune uveoretinitis in rats. Immunopathogenic mechanisms and histologic features. Invest Ophthalmol Vis Sci. 1985;26(1):1–9.

    CAS  PubMed  Google Scholar 

  3. Smith JR, Stempel AJ, Bharadwaj A, Appukuttan B. Involvement of B cells in non-infectious uveitis. Clinical & translational immunology. 2016;5(2):e63.

    Article  Google Scholar 

  4. Wang R‑X, Yu C‑R, Dambuza IM, Mahdi RM, Dolinska MB, Sergeev YV, et al. Interleukin-35 induces regulatory B cells that suppress autoimmune disease. Nat Med. 2014;20:633–41.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dambuza IM, He C, Choi JK, Yu C‑R, Wang R, Mattapallil MJ, et al. IL-12p35 induces expansion of IL-10 and IL-35-expressing regulatory B cells and ameliorates autoimmune disease. Nature communications. 2017;8(1):719.

  6. Egwuagu CE, Yu C‑R. Interleukin 35-Producing B Cells (i35-Breg): A New Mediator of Regulatory B‑Cell Functions in CNS Autoimmune Diseases. Crit Rev Immunol. 2015;35(1):49–57.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Davis JL, Chan CC, Nussenblatt RB. Diagnostic vitrectomy in intermediate uveitis. Dev Ophthalmol. 1992;23:120–32.

  8. Hogan MJ, Wood IS, Godfrey WA. Aqueous Humor Cytology in Uveitis. JAMA Ophthalmol. 1973;89(3):217–20.

    CAS  Google Scholar 

  9. Belfort R Jr., Moura NC, Mendes NF. T and B Lymphocytes in the Aqueous Humor of Patients With Uveitis. JAMA Ophthalmol. 1982;100(3):465–7.

    Google Scholar 

  10. Wildner G, Hunig T, Thurau SR. Orally induced, peptide-specific gamma/delta TCR+ cells suppress experimental autoimmune uveitis. Eur J Immunol. 1996;26(9):2140–8.

    Article  CAS  PubMed  Google Scholar 

  11. Grégoire S, Terrada C, Martin GH, Fourcade G, Baeyens A, Marodon G, et al. Treatment of Uveitis by In Situ Administration of Ex Vivo-Activated Polyclonal Regulatory T Cells. J Immunol. 2016;196(5):2109–18.

    Article  PubMed  Google Scholar 

  12. Gilbert RM, Zhang X, Sampson RD, Ehrenstein MR, Nguyen DX, Chaudhry M, et al. Clinical Remission of Sight-Threatening Non-Infectious Uveitis Is Characterized by an Upregulation of Peripheral T‑Regulatory Cell Polarized Towards T‑bet and TIGIT. Front Immunol. 2018;9:907.

  13. Thorne JE, Suhler E, Skup M, Tari S, Macaulay D, Chao J, et al. Prevalence of Noninfectious Uveitis in the United States: A Claims-Based Analysis. JAMA Ophthalmol. 2016;134(11):1237–45.

    Article  Google Scholar 

  14. Gritz DC, Wong IG. Incidence and prevalence of uveitis in Northern California; the Northern California Epidemiology of Uveitis Study. Ophthalmology. 2004;111(3):491–500.

    Article  PubMed  Google Scholar 

  15. Shechter R, London A, Schwartz M. Orchestrated leukocyte recruitment to immune-privileged sites: absolute barriers versus educational gates. Nat Rev Immunol. 2013;13(3):206–18.

    Article  CAS  PubMed  Google Scholar 

  16. Taylor AW, Streilein JW, Cousins SW. Identification of alpha-melanocyte stimulating hormone as a potential immunosuppressive factor in aqueous humor. Curr Eye Res. 1992;11(12):1199–206.

    Article  CAS  PubMed  Google Scholar 

  17. Taylor AW, Yee DG. Somatostatin is an immunosuppressive factor in aqueous humor. Invest Ophthalmol Vis Sci. 2003;44(6):2644–9.

    Article  PubMed  Google Scholar 

  18. Stein-Streilein J, Lucas K. A current understanding of ocular immune privilege. CIR. 2011;7(3):336–43.

    Article  CAS  Google Scholar 

  19. Taylor AW. Ocular immunosuppressive microenvironment. Chem Immunol. Allergy. 2007;92:71–85.

    CAS  Google Scholar 

  20. McPherson SW, Heuss ND, Local GDS. “On-Demand” Generation and Function of Antigen-Specific Foxp3+ Regulatory T Cells. J Immunol. 2013;190(10):4971–81.

    Article  CAS  PubMed  Google Scholar 

  21. Whitcup SM, DeBarge LR, Caspi RR, Harning R, Nussenblatt RB, Chan CC. Monoclonal antibodies against ICAM‑1 (CD54) and LFA‑1 (CD11a/CD18) inhibit experimental autoimmune uveitis. Clin Immunol Immunopathol. 1993;67(2):143–50.

    Article  CAS  PubMed  Google Scholar 

  22. Whitcup SM, DeBarge LR, Rosen H, Nussenblatt RB, Chan CC. Monoclonal antibody against CD11b/CD18 inhibits endotoxin-induced uveitis. Invest Ophthalmol Vis Sci. 1993;34(3):673–81.

  23. Wildner G. Antigenic mimicry—The key to autoimmunity in immune privileged organs. J Autoimmun. 2022;102942.

  24. Oldstone MBA. Molecular mimicry and immune-mediated diseases. FASEB j. 1998;12(13):1255–65.

    Article  CAS  PubMed  Google Scholar 

  25. Geginat J, Paroni M, Pagani M, Galimberti D, De Francesco R, Scarpini E, et al. The Enigmatic Role of Viruses in Multiple Sclerosis: Molecular Mimicry or Disturbed Immune Surveillance? Trends Immunol. 2017;38(7):498–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chu XK, Chan C‑C. Sympathetic ophthalmia: to the twenty-first century and beyond. J Ophthalmic Inflamm Infect. 2013;3(1):49.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Thurau S, Engelke H, McCluskey P, Symes RJ, Whist E, Teuchner B, et al. Uveitis in Tumor Patients Treated with Immunological Checkpoint- and Signal Transduction Pathway-Inhibitors. Ocul Immunol Inflamm. 2022;30(7–8:1588–94.

    Article  Google Scholar 

  28. Thurau S, Wildner G, Gamulescu MA. Ocular side effects of modern oncological therapy : Immunological checkpoint and MEK/BRAF signal transduction inhibitors. Ophthalmologie. 2023;120(5):559–73.

    Article  PubMed  Google Scholar 

  29. Wildner G. Tumors, tumor therapies, autoimmunity and the eye. Autoimmun Rev. 2021;20(9):102892.

    Article  CAS  PubMed  Google Scholar 

  30. Kucuksezer UC, Aktas-Cetin E, Bilgic-Gazioglu S, Tugal-Tutkun I, Gül A, Deniz G. Natural killer cells dominate a Th‑1 polarized response in Behçet’s disease patients with uveitis. Clin Exp Rheumatol. 2015;33(6 Suppl 94):S24–9.

  31. Fu Q, Man X, Wang X, Song N, Li Y, Xue J, et al. CD83(+) CCR7(+) NK cells induced by interleukin 18 by dendritic cells promote experimental autoimmune uveitis. J Cell Mol Med. 2019;23(3):1827–39.

    Article  CAS  PubMed  Google Scholar 

  32. Thurau SR, Mempel TR, Flugel A, Diedrichs Mohring M, Krombach F, Kawakami N, et al. The fate of autoreactive, GFP+ T cells in rat models of uveitis analyzed by intravital fluorescence microscopy and FACS. Int Immunol. 2004;16(11):1573–82.

    Article  CAS  PubMed  Google Scholar 

  33. Rosenbaum JT. Extraarticular manifestations: uveitis. In: Inman R, Sieper J, Hrsg. Textbook of Axial Spondylarthritis. 1. Aufl. Oxford: Oxford University Press; 2016. S. 145–8.

    Google Scholar 

  34. Diedrichs-Möhring M, Niesik S, Priglinger CS, Thurau SR, Obermayr F, Sperl S, et al. Intraocular DHODH-inhibitor PP-001 suppresses relapsing experimental uveitis and cytokine production of human lymphocytes, but not of RPE cells. J Neuroinflammation. 2018;15(1):54.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Diedrichs-Möhring M, Leban J, Strobl S, Obermayr F, Wildner G. A New Small Molecule For Treating Inflammation and Chorioretinal Neovascularization in Relapsing-Remitting and Chronic Experimental Autoimmune Uveitis. Investigative Ophthalmology & Visual Science. 2015;56(2):1147–57.

  36. Diedrichs-Mohring M, Hoffmann C, Wildner G. Antigen-dependent monophasic or recurrent autoimmune uveitis in rats. Int Immunol. 2008;20(3):365–74.

    Article  PubMed  Google Scholar 

  37. Forrester JV, Huitinga I, Lumsden L, Dijkstra CD. Marrow-derived activated macrophages are required during the effector phase of experimental autoimmune uveoretinitis in rats. Curr Eye Res. 1998;17(4):426–37.

    Article  CAS  PubMed  Google Scholar 

  38. Kaufmann U, Diedrichs-Mohring M, Wildner G. Dynamics of intraocular IFN-gamma, IL-17 and IL-10-producing cell populations during relapsing and monophasic rat experimental autoimmune uveitis. Plos One. 2012;7(11:e49008.

    Article  Google Scholar 

  39. Amadi-Obi A, Yu CR, Liu X, Mahdi RM, Clarke GL, Nussenblatt RB, et al. TH17 cells contribute to uveitis and scleritis and are expanded by IL‑2 and inhibited by IL-27/STAT1. Nat Med. 2007;13(6):711–8.

    Article  CAS  PubMed  Google Scholar 

  40. Diedrichs-Möhring M, Kaufmann U, Wildner G. The immunopathogenesis of chronic and relapsing autoimmune uveitis—Lessons from experimental rat models. Prog Retin Eye Res. 2018;Jul:65:107–26.

    Article  PubMed  Google Scholar 

  41. Oh HM, Yu CR, Lee Y, Chan CC, Maminishkis A, Egwuagu CE. Autoreactive memory CD4+ T lymphocytes that mediate chronic uveitis reside in the bone marrow through STAT3-dependent mechanisms. J Immunol. 2011;187(6):3338–46.

    Article  CAS  PubMed  Google Scholar 

  42. McGonagle D, McDermott MF. A proposed classification of the immunological diseases. PLoS Med. 2006;3(8):e297.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kilmartin DJ, Wilson D, Liversidge J, Dick AD, Bruce J, Acheson RW, et al. Immunogenetics and clinical phenotype of sympathetic ophthalmia in British and Irish patients. Br J Ophthalmol. 2001;85(3):281–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Huang XF, Brown MA. Progress in the genetics of uveitis. Genes Immun. 2022;23(2):57–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kasper M, Heming M, Schafflick D, Li X, Lautwein T, Meyer Zu Horste M, et al. Intraocular dendritic cells characterize HLA-B27-associated acute anterior uveitis. Elife. 2021;10.

  46. Perazzio SF, Andrade LEC, de Souza AWS. Understanding Behçet’s Disease in the Context of Innate Immunity Activation. Front Immunol. 2020;11:586558.

  47. Trombke J, Loyal L, Braun J, Pleyer U, Thiel A, Pohlmann D. Analysis of peripheral inflammatory T cell subsets and their effector function in patients with Birdshot Retinochoroiditis. Sci Rep. 2021;11(1):8604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kurhan Yavuz S, Direskeneli H, Bozkurt N, Ozyazgan Y, Bavbek T, Kazokoglu H, et al. Anti-MHC autoimmunity in Behcet’s disease: T cell responses to an HLA-B-derived peptide cross-reactive with retinal‑S antigen in patients with uveitis. Clin Exp Immunol. 2000;120(1):162–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wildner G, Thurau SR. Cross-reactivity between an HLA-B27-derived peptide and a retinal autoantigen peptide: a clue to major histocompatibility complex association with autoimmune disease. Eur J Immunol. 1994;24(11):2579–85.

    Article  CAS  PubMed  Google Scholar 

  50. Takeuchi M, Mizuki N, Ohno S. Pathogenesis of Non-Infectious Uveitis Elucidated by Recent Genetic Findings. Front Immunol. 2021;12:640473.

  51. Mumcu G, Fortune F. Oral Health and Its Aetiological Role in Behçet’s Disease. Front Med (Lausanne). 2021;8:613419.

    Article  PubMed  Google Scholar 

  52. Ye Z, Zhang N, Wu C, Zhang X, Wang Q, Huang X, et al. A metagenomic study of the gut microbiome in Behcet’s disease. Microbiome. 2018;6(1):135.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Rosenbaum JT, Asquith M. The microbiome and HLA-B27-associated acute anterior uveitis. Nat Rev Rheumatol. 2018;14(12):704–13.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Horai R, Zárate-Bladés CR, Dillenburg-Pilla P, Chen J, Kielczewski JL, Silver PB, et al. Microbiota-Dependent Activation of an Autoreactive T Cell Receptor Provokes Autoimmunity in an Immunologically Privileged Site. Immunity. 2015;43(2):343–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhild Wildner.

Ethics declarations

Interessenkonflikt

G. Wildner und S. Thurau geben an, dass kein Interessenkonflikt besteht.

Additional information

Hinweis des Verlags

Der Verlag bleibt in Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutsadressen neutral.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wildner, G., Thurau, S. Pathogenese der Uveitis. Spektrum Augenheilkd. (2024). https://doi.org/10.1007/s00717-023-00563-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00717-023-00563-y

Schlüsselwörter

Keywords

Navigation