Spektrum der Augenheilkunde

, Volume 33, Issue 1, pp 1–5 | Cite as

Repeatability of wavefront measurements in pseudophakic eyes

  • Christoph Leisser
  • Nino Hirnschall
  • Marlies Ullrich
  • Oliver FindlEmail author
original article



Higher- as well as lower-order aberrations influence uncorrected visual quality after successful cataract surgery. Different techniques are used for measuring ocular wavefront aberrations, such as Hartmann–Shack aberrometers, laser ray tracing aberrometers, and automatic retinoscopy. The aim of our study was to assess the repeatability of a Hartmann–Shack aberrometer measurement in a pseudophakic study population.


This prospective study included patients who underwent cataract surgery 1 month prior to recruitment. Three consecutive Hartmann–Shack measurements (WASCA, Carl Zeiss Meditec AG, Germany) were performed after pharmacological dilation of the pupil.


In total, 156 eyes of 156 patients were included. Repeatability of measurements was good in pseudophakic eyes for all Zernike polynomials up to the fourth order. The median values of the SD of all three measurements ranged between 0.042 and 0.125 for the Tecnis intraocular lens (IOL) and 0.028 and 0.148 for the CT Asphina 409MP IOL. Intraclass correlation coefficients ranged between 0.793592 and 0.97955 for the Tecnis IOL and between 0.673894 and 0.989172 for the CT Asphina 409MP IOL.


Postoperative unsatisfactory image quality, sometimes reported by patients, despite good defocus and astigmatism values calls for examination of higher-order aberrations. Hartmann–Shack measurements with the WASCA offers good repeatability in pseudophakic patients and, therefore, fulfills this task.


Hartmann–Shack aberrometry Repeatability Higher-order aberrations 

Reproduzierbarkeit von Wellenfrontmessungen bei pseudophaken Augen



Aberrationen höherer Ordnung können die Qualität des unkorrigierten Visus nach erfolgreicher Kataraktoperation beeinflussen. Wellenfrontmessungen werden mit dem Hartmann Shack Aberrometer, Laser Ray Tracing Aberrometer und automatischer Retinoskopie durchgeführt. Ziel unserer Studie war, die Reproduzierbarkeit eines Hartmann Shack Aberrometer in einer pseudophaken Studiengruppe zu berechnen.


Bei dieser prospektiven Studie wurden Patienten/innen eingeschlossen, die eine Kataraktoperation 1 Monat zuvor hatten. Drei aufeinanderfolgende Hartmann Shack Messungen (WASCA, Carl Zeiss Meditec AG, Germany) wurden nach pharmakologischer Dilatation der Pupille durchgeführt.


156 Augen von 156 Patienten/innen wurden eingeschlossen. Die Reproduzierbarkeit der Messungen war bei pseudophaken Augen für alle Zernike Polynome bis zur vierten Ordnung gut. Der Median der Standardabweichung aller 3 Messungen betrug zwischen 0.042 and 0.125 für die Tecnis Intraokularlinse und 0.028 und 0.148 für die CT Asphina 409MP Intraokularlinse. Die „Intraclass Correlation Coefficients“ betrugen zwischen 0.793592 und 0.97955 für die Tecnis Intraokularlinse und zwischen 0.673894 und 0.989172 für die CT Asphina 409MP Intraokularlinse.


Postoperative, unzufriedenstellende Bildqualität, wie sie manchmal von Patienten/innen berichtet wird, erfordert bei guten Defocus- und Astigmatismuswerten die Messung der Aberrationen höherer Ordnung. Hartmann Shack Messungen mit dem WASCA zeigen gute Reproduzierbarkeit bei pseudophaken Patienten/innen.


Hartmann–Shack Aberrometrie Reproduzierbarkeit Aberrationen höherer Ordnung 


Compliance with Ethical Guidelines

Conflict of interest

O. Findl is a scientific advisor for Carl Zeiss Meditec AG, N. Hirnschall receives presentation fees from Carl Zeiss Meditec AG, but both have no personal interest in the products mentioned. C. Leisser, N. Hirnschall, M. Ullrich, and O. Findl declare that they have no competing interests.

Ethical standards

All the research and measurements followed the tenets of the Declaration of Helsinki and were approved by the local ethics committee. Written informed consent was obtained from all study participants.


  1. 1.
    Drexler W, Baumgartner A, Findl O, Hitzenberger CK, Sattmann H, Fercher AF. Submicrometer precision biometry of the anterior segment of the human eye. Invest Ophthalmol Vis Sci. 1997;38(7):1304–13.PubMedGoogle Scholar
  2. 2.
    Findl O, Drexler W, Menapace R, Heinzl H, Hitzenberger CK, Fercher AF. Improved prediction of intraocular lens power using partial coherence interferometry. J Cataract Refract Surg. 2001;27(6):861–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Hirnschall N, Murphy S, Pimenides D, Maurino V, Findl O. Assessment of a new averaging algorithm to increase the sensitivity of axial eye length measurement with optical biometry in eyes with dense cataract. J Cataract Refract Surg. 2011;37(1):45–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Visser N, Beckers HJ, Bauer NJ, et al. Toric vs aspherical control intraocular lenses in patients with cataract and corneal astigmatism: a randomized clinical trial. JAMA Ophthalmol. 2014;132(12):1462–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Kessel L, Andresen J, Tendal B, Erngaard D, Flesner P, Hjortdal J. Toric intraocular lenses in the correction of astigmatism during cataract surgery: a systematic review and meta-analysis. Ophthalmology. 2016;123(2):275–86.PubMedCrossRefGoogle Scholar
  6. 6.
    Hirnschall N, Hoffmann PC, Draschl P, Maedel S, Findl O. Evaluation of factors influencing the remaining astigmatism after toric intraocular lens implantation. J Refract Surg. 2014;30(6):394–400.PubMedCrossRefGoogle Scholar
  7. 7.
    Wang L, Koch DD. Custom optimization of intraocular lens asphericity. J Cataract Refract Surg. 2007;33(10):1713–20.PubMedCrossRefGoogle Scholar
  8. 8.
    Kerschner RM. Retinal image contrast and functional visual performance with aspheric, silicone, and acrylic intraocular lenses. Prospective evaluation. J Cataract Refract Surg. 2003;29(9):1684–94.CrossRefGoogle Scholar
  9. 9.
    Caporossi A, Martone G, Casprini F, Rapisarda L. Prospective randomized study of clinical performance of 3 aspheric and 2 spherical intraocular lenses in 250 eyes. J Refract Surg. 2007;23(7):639–48.PubMedCrossRefGoogle Scholar
  10. 10.
    Shentu X, Tang X, Yao K. Spherical aberration, visual performance and pseudoaccommodation of eyes implanted with different aspheric intraocular lens. Clin Exp Ophthalmol. 2008;36(7):620–4.PubMedCrossRefGoogle Scholar
  11. 11.
    Kohnen T, Klaproth OK, Bühren J. Effect of intraocular lens asphericity on quality of vision after cataract removal: an intraindividual comparison. Ophthalmology. 2009;116(9):1697–706.PubMedCrossRefGoogle Scholar
  12. 12.
    Crnej A, Buehl W, Greslechner R, Hirnschall N, Findl O. Effect of an aspheric intraocular lens on the ocular wave-front adjusted for pupil size and capsulorhexis size. Acta Ophthalmol. 2014;92(5):e353–e7.PubMedCrossRefGoogle Scholar
  13. 13.
    Thibos LN. Principles of Hartmann-Shack aberrometry. J Refract Surg. 2000;16(5):S563–S5.PubMedGoogle Scholar
  14. 14.
    Mrochen M, Kaemmerer M, Mierdel P, Krinke HE, Seiler T. Principles of Tscherning aberrometry. J Refract Surg. 2000;16(5):S570–S1.PubMedGoogle Scholar
  15. 15.
    Molebny VV, Panagopoulou SI, Molebny SV, Wakil YS, Pallikaris IG. Principles of ray tracing aberrometry. J Refract Surg. 2000;16(5):S572–S5.PubMedGoogle Scholar
  16. 16.
    Moreno-Barriuso E, Navarro R. Laser Ray Tracing versus Hartmann-Shack sensor for measuring optical aberrations in the human eye. J Opt Soc Am A Opt Image Sci Vis. 2000;17(6):974–85.PubMedCrossRefGoogle Scholar
  17. 17.
    MacRae S, Fujieda M. Slit skiascopic-guided ablation using the Nidek laser. J Refract Surg. 2000;16(5):S576–S80.PubMedGoogle Scholar
  18. 18.
    Mello GR, Rocha KM, Santhiago MR, Smadja D, Krueger RR. Applications of wavefront technology. J Cataract Refract Surg. 2012;38(9):1671–83.PubMedCrossRefGoogle Scholar
  19. 19.
    Liang J, Grimm B, Goelz S, Bille JF. Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor. J Opt Soc Am A Opt Image Sci Vis. 1994;11(7):1949–57.PubMedCrossRefGoogle Scholar
  20. 20.
    Visser N, Berendschot TT, Verbakel F, Tan AN, de Brabander J, Nuijts RM. Evaluation of the comparability and repeatability of four wavefront aberrometers. Invest Ophthalmol Vis Sci. 2011;52(3):1302–11.PubMedCrossRefGoogle Scholar
  21. 21.
    Cervino A, Hosking SL, Montés-Micó R. Comparison of higher order aberrations measured by NIDEK OPD-scan dynamic skiascopy and Zeiss WASCA Hartmann-Shack aberrometers. J Refract Surg. 2008;24(8):790–6.PubMedGoogle Scholar
  22. 22.
    López-Miguel A, Martínez-Almeida L, González-García MJ, Coco-Martín MB, Sobrado-Calvo P, Maldonado MJ. Precision of higher-order aberration measurements with a new Placido-disk topographer and Hartmann-Shack wavefront sensor. J Cataract Refract Surg. 2013;39(2):242–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Mao X, Banta JT, Ke B, Jiang H, He J, Liu C, Wang J. Wavefront derived refraction and full eye biometry in pseudophakic eyes. PLoS ONE. 2016;11(3):e152293.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Mirshahi A, Bühren J, Gerhardt D, Kohnen T. In vivo and in vitro repeatability of Hartmann-Shack aberrometry. J Cataract Refract Surg. 2003;29(12):2295–301.PubMedCrossRefGoogle Scholar
  25. 25.
    Fujikado T, Saika M. Evaluation of actual retinal images produced by misaligned aspheric intraocular lenses in a model eye. Clin Ophthalmol. 2014;8:2415–23.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Yamaguchi T, Negishi K, Ono T, et al. Feasibility of spherical aberration correction with aspheric intraocular lenses in cataract surgery based on individual pupil diameter. J Cataract Refract Surg. 2009;35(10):1725–33.PubMedCrossRefGoogle Scholar
  27. 27.
    Carkeet A, Velaedan S, Tan YK, Lee DY, Tan DT. Higher order ocular aberrations after cycloplegic and non-cycloplegic pupil dilation. J Refract Surg. 2003;19(3):316–22.PubMedGoogle Scholar
  28. 28.
    Giessler S, Hammer T, Duncker GI. Aberrometry due dilated pupils - which mydriatic should be used? Klin Monbl Augenheilkd. 2002;219(9):655–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Cervino A, Hosking SL, Dunne MC. Operator-induced errors in Hartmann-Shack wavefront sensing: model eye study. J Cataract Refract Surg. 2007;33(1):115–21.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Christoph Leisser
    • 1
  • Nino Hirnschall
    • 1
  • Marlies Ullrich
    • 1
  • Oliver Findl
    • 1
    Email author
  1. 1.VIROS—Vienna Institute for Research in Ocular Surgery, a Karl Landsteiner InstituteHanusch HospitalViennaAustria

Personalised recommendations