Spektrum der Augenheilkunde

, Volume 24, Issue 6, pp 311–315 | Cite as

Inner segment/outer segment junction als prognostischer Faktor in der Makulachirurgie

  • P. V. Vécsei-Marlovits
  • P. Irsigler
  • B. Weingessel
Originalarbeit

Zusammenfassung

PROBLEMSTELLUNG: Ziel der Studie war es zu klären, ob mittels hochauflösender optischer Kohärenztomografie (OCT) eine zusätzliche Aussage betreffend anatomischer und funktioneller Prognose bei verschiedenen Makulapathologien getroffen werden kann. METHODE: In dieser retrospektiven Studie wurden alle makulachirurgischen Eingriffe, die im KH Hietzing von Juli 2008 bis Juli 2009 durchgeführt wurden, hinsichtlich postoperativem Visusanstieg und Verlauf im OCT analysiert. Visus und zentrale Netzhautdicke im OCT präoperativ und 1 Monat postoperativ, sowie der Visus bei der Kontrolle nach durchschnittlich 3 Monaten wurden verglichen. 45 Augen wurden entsprechend ihrer Pathologie unterteilt in: 19 Augen (42,2%) mit epiretinaler Fibrose (ERF), 8 (17,8%) mit vitreomakulärer Traktion (VMT), 10 (22,2%) mit durchgreifendem Makulaloch (ML) und 8 (17,8%) mit lamellärem Makulaloch oder Pseudohole. ERGEBNISSE: Bei den insgesamt 45 PatientInnen kam es 1 Monat postoperativ zu einem signifikanten Visusanstieg von 0.27 ± 0,17 Snellen auf 0,42 ± 0.24 Snellen (p < 0,001) und zu einer signifikanten Abnahme der zentralen Netzhautdicke im OCT von 385,4 ± 94,6 µm auf 353,4 ± 66,5 µm (p = 0,015). Bei PatientInnen mit ERF, die bei der letzten Kontrolle eine durchgehende IS/OS-Junction im OCT aufwiesen, hatten sowohl präals auch postoperativ einen besseren Visus (0,41 ± 0,20 vs. 0,27 ± 0,11, p = 0,084 und 0,58 ± 0,22 vs. 0,38 ± 0,15, p = 0,053). Auch PatientInnen mit VMT wiesen einen tendenziell höheren Visusgewinn auf (0,52 ± 0,22 vs. 0,36 ± 0,18, p = 0,310) sowie PatientInnen mit lamellären ML und Pseudoholes (0,45 ± 0,07 vs. 0,66 ± 0,24, p = 0,137). PatientInnen mit durchgreifendem Makulaloch mit Lochschluss nach dem Ersteingriff (55,6%) hatten präoperativ einen kleineren Lochdurchmesser (537,7 ± 246,7 µm vs 984,3 ± 239,3 µm; p = 0,062). SCHLUSSFOLGERUNG: Mit Hilfe des hochauflösenden OCTs lässt sich der postoperative Verlauf nach Makulachirurgie objektiver und genauer kontrollieren, wodurch eine verlässlichere Aussage bezüglich der Visusprognose im Zusammenhang mit durchgehender IS/OS-Junction möglich wird.

Schlüsselwörter

Hochauflösendes OCT Makulachirurgie IS/OS Junction 

Inner segment/Outer segment junction as prognostic factor in macular surgery

Summary

PURPOSE: The aim of the study was to clarify whether an additional information about anatomical and functional prognosis can be made in different macular pathologies by means of high definition optical coherence tomography (OCT). METHOD: In this retrospective study all cases of surgical therapeutic interventions on the macula, conducted in KH Hietzing between July 2008 and July 2009, were analyzed regarding post operative visual acuity and course in OCT. Visual acuity and central retinal thickness in OCT were compared preoperatively to one month postoperative, as well as visual acuity after 3 months. 45 eyes were subdivided according to their pathology in: 19 eyes (42.2%) with epiretinal fibrosis (ERF), 8 (17.8%) with vitreomacular traction (VMT), 10 (22.2%) with full thickness macular hole (ML) and 8 (17.8%) with lamellar macular hole or pseudohole. RESULTS: All patients had a significant increase in visual acuity from 0.27 ± 0.17 Snellen to 0.42 ± 0.24 Snellen (p<0.001) 1 month postoperative. There was a significant reduction of central retinal thickness in the OCT, from 385.4 ± 94.6µm to 353.4 ± 66.5 µm (p = 0.015). Patients with ERF, who showed a continuous IS/OS-junction in the OCT at the last checkup, showed pre- and postoperatively better visual acuity (0.41 ± 0.20 vs. 0.27 ± 0.11, p = 0.084 and 0.58 ± 0.22 vs. 0.38 ± 0.15, p = 0.053). Furthermore, patients with VMT (0.52 ± 0.22 vs. 0.36 ± 0.18, p = 0.310) and patients with lamellar macular holes or pseudoholes (0.45 ± 0.07 vs. 0.66 ± 0.24, p = 0.137) tended to greater visual gain. Primary success in hole closure in patients with full thickness macular hole was associated with smaller diameter preoperatively (537.7 ± 246.7 µm vs. 984.3 ± 239.3 µm; p = 0.062). CONCLUSION: The postoperative course after macular surgery can be monitored more objectively and precisely with the help of high resolution OCT, whereby a more reliable prediction concerning visual acuity in relation with continuous IS/OS-junction can be made.

Keywords

High resolution OCT Macular surgery IS/OS junction 

Literatur

  1. de Preobrajensky N, Mrejen S, Adam R, Ayello-Scheer S. 23-gauge transconjunctival sutureless vitrectomy: a retrospective study of 164 consecutive cases. J Fr Ophthalmol. 2010; 33(2):99–104CrossRefGoogle Scholar
  2. Hikichi T, Matsumoto N, Ohtsuka H, et al. Comparison of one-year outcomes between 23- and 20-gauge vitrectomy for preretinal membrane. Am J Ophthalmol 2009;147(4): 639–43CrossRefPubMedGoogle Scholar
  3. Rizzo S, Belting C, Genovesi-Ebert F, di Bartolo E. Incidence of retinal detachment after small incision, sutureless pars plana vitrectomy compared with conventional 20-gauge vitrectomy in macular hole and epiretinal membrane surgery. Retina 2010;30(7):1065–71CrossRefPubMedGoogle Scholar
  4. Aylward GW. Sutureless vitrectomy. Ophthalmologica 2010;24;225(2):67–75. [Epub a head of print]Google Scholar
  5. Wimpissinger B, Kellner L, Brannath W, et al. 23-Gauge versus 20-gauge system for pars plana vitrectomy: a prospective randomised clinical trial. Br J Ophthalmol. 2008; 92(11):1483–7CrossRefPubMedGoogle Scholar
  6. Nagpal M, Wartikar S, Nagpal K. Comparison of clinical outcomes and wound dynamics of sclerotomy ports of 20, 25, and 23 gauge vitrectomy. Retina 2009;29(2):225–31CrossRefPubMedGoogle Scholar
  7. Mentens R, Stalmans P. Comparison of postoperative comfort in 20 gauge versus 23 gauge pers plana vitrectomy. Bull Soc Belge Ophthalmol. 2009; 311:5–10Google Scholar
  8. Sisk RA, Murray TG. Combined phacoemulsification and sutureless 23-gauge pars plana vitrectomy for complex vitreoretinal diseases. Br J Ophthalmol 2010;94(8): 1028–32CrossRefPubMedGoogle Scholar
  9. Lois N, Burr JM, Norrie J, et al. Internal limiting membrane peeling versus no peeling for idiopathic full thickness macular hole: A pragmatic randomised controlled trial. Invest Ophthalmol Vis Sci Nov.4 [Epub ahead of print]Google Scholar
  10. Schadlu R, Tehrani S, Shah GK, Prasad AG. Long-term follow-up results of ilm peeling during vitrectomy surgery for premacular fibrosis. Retina 2008;28(6):853–7CrossRefPubMedGoogle Scholar
  11. Wirbelauer C, Häberle H, Pham DT. Clinical experience with brilliant blue G staining of the retinal surface. Klin Monatsbl Augenheilkd. 2010 Sep 15. [Epub ahead of print]Google Scholar
  12. Henrich PB, Haritoglou C, Meyer P, Anatomical and funstional outcome in brilliant blue G assisted chromovitrectomy. Acta Ophthalmol. 2010; 88(5):588–93PubMedGoogle Scholar
  13. Schumann RG, Gandorfer A, Eibl KH, Henrich PB, Kampik A, Haritoglou C. Sequential epiretinal membrane removal with internal limiting membrane peeling in brilliant blue G-assisted macular surgery. Br J Ophthalmol. 2010 94(10): 1369–72CrossRefPubMedGoogle Scholar
  14. B.Liu, M.E. Brezinski. Theoretical and practical considerations on detection performance of time domain, Fourier domain, and swept source optical coherence t omography. Journal of Biomedical Optics. 2007, S. 0444007, doi:10.1117/1.2753410Google Scholar
  15. Ferreira Saraceno JJ, Mateus IM, Lopes Machado T, et al. Study on macular Morphology after removal of the idiopathic epiretinal membrane using the optical coherence tomography (OCT): a pilot study. Arq Bras Oftalmol. 2007; 70(6):935–8PubMedGoogle Scholar
  16. Inoue M, Watanabe Y, Arakawa A, Sato S, Kobayashi S, Kadonosono K. Spectral-domain optical coherence tomography images of inner/outer segment junctions and macular hole surgery outcomes. Graefes Arch Clin Exp Ophthalmol. 2009;247(3):325–30CrossRefPubMedGoogle Scholar
  17. Falkner-Radler CI, Glittenberg C, Hagen S, Benesch T, Binder S. Spectral-domain optical coherence tomography for monitoring epiretinal membrane surgery. Ophthalmology 2010; 117(4):798–805CrossRefPubMedGoogle Scholar
  18. Sano M, Shimoda Y, Hashimoto H, Kishi S. Restored photoreceptor outer segment and visual recovery after macular hole closure. AM J Ophthalmol 2009;147(2):313–8CrossRefPubMedGoogle Scholar
  19. Mitamura Y, Hirano K, Baba T, Yamamoto S. Correlation of visual recovery with presence of photoreceptor inner/ outer segment junction in optical coherence images after epiretinal membrane surgery. Br J Ophthalmol. 2009; 93(2):171–5CrossRefPubMedGoogle Scholar
  20. Chen JC, Lee LR. Clinical spectrum of lammelar macular defects including pseudoholes and pseudocysts defined by optical coherence tomography. Br J Ophthalmol. 2008; 92(10):1342–6CrossRefPubMedGoogle Scholar
  21. Berrod JP, Poirson A. Which epiretinal membranes should be operated. J Fr Ophthalmol 2008;31(2):192–9CrossRefGoogle Scholar
  22. Oster S, Mojana F, Brar M, Yuson R, Cheng L, Freeman W. Disruption of the photoreceptor inner segment/outer segment layer on spectral domain-optical coherence tomography is a predictor of poor visual acuity in patients with epiretinal membranes. Retina 2010;30(5):713–8CrossRefPubMedGoogle Scholar
  23. Cihelková I, Soucek P, Sach J. Optical coherence tomography in pars plana vitrectomy for idiopathic macular hole. Cesk Slov Oftalmol. 2006;62(2)100–9PubMedGoogle Scholar
  24. Uemoto R, Yamamoto S, Aoki T, Tsukahara I, Yamamoto T, Takeuchi S. Macular configuration determined by optical coherence tomography after idiopathic macular hole surgery with or without internal limiting membrane peeling. Br J Ophthalmol 2002; 86(11):1240–2CrossRefPubMedGoogle Scholar
  25. Ruiz-Moreno JM, Staicu C, Pinero DP, Montero J, Lugo F, Amat P. Optical coherence tomography predictive factors for macular hole surgery outcome. Br J Ophthalmol. 2008; 92(5):640–4CrossRefPubMedGoogle Scholar
  26. Michalewska Z, Michalewski J, Odrobina D, et al. Surgical treatement of lammelar macular holes. Graefes Arch Clin Exp Ophthalmol. 2010;248(10):1395–400CrossRefPubMedGoogle Scholar
  27. Androudi S, Stangos A, Brazitikos. Lammelar macular holes: tomographic features and surgical outcome. Am J Ophthalmol. 2009;148(3):420–6CrossRefPubMedGoogle Scholar
  28. Garretson BR, Pollack JS, Ruby AJ, Drenser KA, Williams GA, Sarrafizadeh R. Vitrectomy for a symptomatic lamellar macular hole. Ophthalmology 2008;115(5):884–6CrossRefPubMedGoogle Scholar
  29. Witkin AJ, Castro LC, Reichel E, Rogers AH, Baumal CR, Duker JS. Anatomic and Visual Outcomes of Vitrectomy for Lammelar Macular Holes. Ophthalmic Surg Lasers Imaging. 2010 May 5:1–7 [Epub ahead of print]Google Scholar
  30. Chang LK, Koizumi H, Spaide RF. Disruption of the photoreceptor inner segment-outer segment junction in eyes with macular holes. Retina 2008; 28:969–75CrossRefPubMedGoogle Scholar
  31. Suh MH, Seo JM, Park KH, Yu HG. Associations between macular findings by optical coherence tomography and visual outcomes after epiretinal membrane removal. Am J Ophthalmol. 2009;147(3):473–480CrossRefPubMedGoogle Scholar
  32. Schulze S, Köhler K, Schuller C. Wertigkeit unterschiedlicher Verfahren der präoperativen Sehschärfeerfassung zur Vorhersage des postoperativen Visus nach Vitrektomien bei epiretinaler Gliose und Makulaforamen. Spektrum Augenheilkd. 2005; 19(3): 164–7CrossRefGoogle Scholar
  33. Chalam KV, Murthy RK, Gupta SK, Brar VS, Grover S. Foveal structure defined by spectral domain optical coherence tomography correlates with visual function after macular hole surgery. Eur J Ophthalmol. 2010 May-Jun; 20(3):572–7PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • P. V. Vécsei-Marlovits
    • 1
    • 2
  • P. Irsigler
    • 1
    • 2
  • B. Weingessel
    • 1
    • 2
  1. 1.AugenabteilungKH HietzingWienAustria
  2. 2.Karl Landsteiner Institut für Prozessoptimierung und Qualitätsmanagement in der KataraktchirurgieAustria

Personalised recommendations