Skip to main content
Log in

Übersicht über die Entwicklung des künstlichen Sehens an der Universitäts-Augenklinik Graz

Review on the development of artificial vision at the University Eye Hospital Graz

  • Übersichtsarbeit
  • Published:
Spektrum der Augenheilkunde Aims and scope Submit manuscript

Summary

Retinitis pigmentosa is a retinal disease leading to photoreceptor and ganglion cell loss. Despite of the significant cell loss in the end stage of the disease, high percentage of vital ganglion cells remain intact. This observation led to the development of retinal implants, which should improve the visual perception and orientation of patients with severe visual impairment or blindness. The stimulation of highly differentiated ganglion cells will lead to uncommon light perceptions, which will be transformed into a meaningful picture after a learning process. The feasibility and stability of a new fixation method for epiretinal implants was investigated in an animal trial at the University Eye Hospital. During the development of the implantation method special care was taken to the later option of safe explantation procedure. In this way the implant can be removed atraumatically, if required, or exchanged for a new implant with new technology. The tests used in ophthalmology are not suitable for evaluation of the progress after implantation of retinal prostheses. On the basis of grating acuity measurement in low vision, the Modified Grating test was developed and tested. To measure the orientation (task performance, functional vision) a maze with obstacles, the Graz Mobility test, was developed and investigated. This review gives an overview about the research done on this field at the University Eye Hospital Graz.

Zusammenfassung

Retinopathia pigmentosa (RP) ist eine retinale Erkrankung, die durch den Untergang der Photorezeptoren und Ganglienzellen zur Erblindung führen kann. Es wurde nachgewiesen, dass trotz des signifikanten Verlustes der Ganglienzellen genügend vitale Ganglienzellen vorhanden sind. Diese Beobachtung löste die Entwicklung der Netzhautimplantate aus, die das Sehvermögen der an RP erblindeten Patienten/-innen verbessern sollen. Durch die Stimulation der hoch-differenzierten Ganglienzellen ist anzunehmen, dass bei den Patienten zunächst ungewohnte Lichtreize ausgelöst werden, die erst im Rahmen eines Lernprozesses zu einem sinnvollen Bild zusammengefügt werden. An der Universitäts-Augenklinik wurde eine spezielle Implantationsmethode für epiretinale Implantate in einem Tierversuch erprobt. Bei der Entwicklung der Methode wurde auf die Möglichkeit einer Explantation Wert gelegt. Damit kann auf Wunsch des Patienten das Implantat atraumatisch entfernt oder gegen ein neues Implantat mit neuer Technologie ausgetauscht werden. Die in der Augenheilkunde gebräuchlichen Tests sind nicht geeignet, um einen Fortschritt nach der Implantation einer epiretinalen Prothese zu evaluieren. In Anlehnung an die Grating Acuity Messung im Low Vision-Bereich wurde der Modifizierte Grating Test zur Überprüfung der Sehschärfe erprobt. Um das Orientierungsvermögen (Aufgabenbewältigung bzw. funktionelles Sehen) der Patienten im Low Vision-Bereich zu erfassen, wurde ein Labyrinth mit Hindernissen, der Grazer Mobilitätstest, entwickelt und getestet. In dieser Übersichtsarbeit wird die Entwicklungsarbeit, die auf diesem Gebiet an der Universitäts-Augenklinik geleistet wurde, dargestellt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Stone JL, Barlow WE, Humayun MS, et al (1992) Morphometric analysis of macular photoreceptors and ganglion cells in retinas with retinitis pigmentosa. Arch Ophthalmol 110: 1634–1639

    CAS  PubMed  Google Scholar 

  • Humayun MS, de Juan E Jr, Dagnelie G, et al (1996) Visual perception elicited by electrical stimulation of retina in blind humans. Arch Ophthalmol 114: 40–46

    CAS  PubMed  Google Scholar 

  • Rizzo JF 3rd, Wyatt J, Loewenstein J, et al (2003) Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials. Invest Ophthalmol Vis Sci 44: 5362–5369

    Article  PubMed  Google Scholar 

  • Zrenner E, Miliczek KD, Gabel VP, et al (1997) The development of subretinal microphotodiodes for replacement of degenerated photoreceptors. Ophthalmic Res 29: 269–280

    CAS  PubMed  Google Scholar 

  • Peyman G, Chow AY, Liang C, et al (1998) Subretinal semiconductor microphotodiode array. Ophthalmic Surg Lasers 29: 234–241

    CAS  PubMed  Google Scholar 

  • Chow AY, Chow VY, Packo KH, et al (2004) The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. Arch Ophthalmol 122: 460–469

    Article  PubMed  Google Scholar 

  • Schanze T, Sachs HG, Wiesenack C, et al (2006) Implantation and testing of subretinal film electrodes in domestic pigs. Exp Eye Res 82: 332–340

    Article  CAS  PubMed  Google Scholar 

  • Schwahn HN, Gekeler F, Kohler K, et al (2001) Studies on the feasibility of a subretinal visual prosthesis: data from Yucatan micropig and rabbit. Graefes Arch Clin Exp Ophthalmol 239: 961–967

    Article  CAS  PubMed  Google Scholar 

  • Eckmiller R (1997) Learning retina implants with epiretinal contacts. Ophthalmic Res 29: 281–289

    Article  CAS  PubMed  Google Scholar 

  • Humayun MS, Weiland JD, Fujii GY, et al (2003) Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vision Res 43: 2573–2581

    Article  PubMed  Google Scholar 

  • Walter P, Szurman P, Vobig M, et al (1999) Successful long-term implantation of electrically inactive epiretinal microelectrode arrays in rabbits. Retina 19: 546–552

    Article  CAS  PubMed  Google Scholar 

  • Güven D, Weiland JD, Fujii G, et al (2005) Long-term stimulation by active epiretinal implants in normal and RCD1 dogs. J Neural Eng 2: 65–73

    Article  Google Scholar 

  • Majji AB, Humayun MS, Weiland JD, et al (1999) Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs. Invest Ophthalmol Vis Sci 40: 2073–2081

    CAS  PubMed  Google Scholar 

  • Ivastinovic D, Langmann G, Nemetz W, et al (2009) Clinical stability of a new method for fixation and explantation of epiretinal implants. Acta Ophthalmol (in print)

  • Schulze-Bonsel K, Feltgen N, Burau H, et al (2006) Visual acuities "hand motion" and "counting fingers" can be quantified with the Freiburg Visual Acuity Test. Invest Ophthalmol Vis Sci 47: 1236–1240

    Article  PubMed  Google Scholar 

  • Ivastinovic D, Georgi T, Hammerlindl E, et al (2008) Testing in low vision patients with retinitis pigmentosa comparing the modified grating test with the Freiburg Visual Acuity Test and ETDRS Charts. Invest Ophthalmol Vis Sci 47: ARVO E-Abstract 3042

  • Georgi T, Ivastinovic D, Hornig R, et al (2009) Validation of Modified Grating Test as a visual acuity test in low vision patients with retinitis pigmentosa. Acta Ophthalmol 87 [Suppl]: 244

    Google Scholar 

  • Velikay-Parel M, Ivastinovic D, Koch M, et al (2007) Repeated mobility testing for later artificial visual function evaluation. J Neural Eng 4: 102–107

    Article  Google Scholar 

  • Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1: 307–310

    CAS  PubMed  Google Scholar 

  • Mattioli-Belmonte M, Giavaresi G, Biagini G, et al (2003) Tailoring biomaterial compatibility: in vivo tissue response versus in vitro cell behavior. Int J Artif Org 26: 1077–1085

    CAS  Google Scholar 

  • Mahmoud TH, McCuen BW 2nd, Hao Y, et al (2003) Lensectomy and vitrectomy decrease the rate of photoreceptor loss in rhodopsin P347L transgentic pigs. Graefes Arch Clin Exp Ophthalmol 241: 298–308

    Article  PubMed  Google Scholar 

  • Ivastinovic D, Georgi T, Hornig R, et al (2009) Investigation of particular surgical steps in epiretinal prostheses implantation procedure in pigs. Acta Ophthalmol 87 [Suppl]: 244

    Google Scholar 

  • Javey G, Schwartz SG, Flynn HW Jr, et al (2009) Lack of toxicity of stainless steel retinal tacks during 21 years of follow-up. Ophthalmic Surg Lasers Imaging 40: 75–76

    Article  PubMed  Google Scholar 

  • Algvere P, Jahnberg P (1990) Fibrovascular response to retinal tacks in the rabbit and monkey eye. Acta Ophthalmol 68: 543–548

    Article  CAS  Google Scholar 

  • Burke JM, McDonald HR, Neuwirth J, et al (1987) Titanium retinal tacks with pneumatic insertion. Histologic evaluation in rabbits. Arch Ophthalmol 105: 404–408

    CAS  PubMed  Google Scholar 

  • Ohira A, de Juan E, Tsai M (1991) Long-term histologic and electrophysiologic evaluation of the alloy retinal tack. Graefes Arch Clin Exp Ophthalmol 229: 95–98

    Article  CAS  PubMed  Google Scholar 

  • Lange C, Feltgen N, Junker B, et al (2009) Resolving the clinical acuity categories "hand motion" and "counting fingers" using the Freiburg Visual Acuity Test (FrACT) Graefes Arch Clin Exp Ophthalmol 247: 137–142

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Velikay-Parel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivastinovic, D., Brandner, M., Georgi, T. et al. Übersicht über die Entwicklung des künstlichen Sehens an der Universitäts-Augenklinik Graz. Spektrum Augenheilkd. 23, 312–318 (2009). https://doi.org/10.1007/s00717-009-0356-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00717-009-0356-3

Keywords

Schlüsselwörter

Navigation