Spektrum der Augenheilkunde

, Volume 23, Issue 4, pp 240–248 | Cite as

Retinal light damage

Review article

Summary

Even moderate exposures of ambient light can impose a threat to human retina and the retinal pigment epithelium – under particular preconditions. Repetitive light-stress implicates reversible phototoxic damage thereby paving the way towards age related macular degeneration (AMD) via temporal summation. Aggravating and interacting prerequisites like genotype/complement factors, smoking, nanomaterials (NM) and obstructive sleep disorders (OSA) as well as other factors "reflective of nature and nurture" [97, 98] eventually impact on the severity of retinal light damage linked to possible formation and progression of AMD.

Keywords

Retinal light damage Age related macular degeneration (AMD) Nanotoxicology Obstructive sleep apnoe (OSA) 

Retinale Licht-Schäden

Zusammenfassung

Unter gewissen Voraussetzungen können mäßige, scheinbar nicht überdosierte Licht – Belastungen Schäden der Netzhaut verursachen. Genotyp/Komplement-System, Rauchen, Stoffwechsel-Störungen, möglicherweise auch Schlaf-Apnoe und "Nano-Toxikologie" können in der Summe die Entstehung einer "alters-bedingten" Macula – Degeneration (AMD) auslösen und beschleunigen.

Schlüsselwörter

Retinale Licht-Schäden Alters-abhängige Macula-Degeneration (AMD) Nano-Toxikologie Schlaf-Apnoe 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed J, Braun RD, Dunn R, Linsenmeier RA (1993) Oxygen distribution in the macaque retina. Invest Ophthalmol Vis Sci 34: 516–521PubMedGoogle Scholar
  2. Barclay L, Lie D (2008) Unrecognized eye disorders linked to sleep disorders. Mayo Clinic Proc 83: 1251–1261CrossRefGoogle Scholar
  3. Barja G (2002) Endogenous oxidative stress: relationship to aging, longevity and caloric restriction. Ageing Res Rev 1: 397–411PubMedCrossRefGoogle Scholar
  4. Baumal CR, Puliafito CA (1998) Laser interactions with the retina and retinal pigment epithelium. In: Marmor M, Wolfensberger T (eds) The retinal pigment epithelium. Oxford Univ Press, Oxford, pp 587–603Google Scholar
  5. Beatty S, Boulton M, Henson D, Koh HH, Murray I (1999) Macular pigment and age-related macular degeneration. Br J Ophthalmol 83: 867–877PubMedCrossRefGoogle Scholar
  6. Boettner EA, Wolter JR (1962) Transmission of the ocular media. Invest Ophthalmol 1: 776–783Google Scholar
  7. Boulton, M, Rozanowska M, Rozanowski B (2001) Retinal photodamage. J Photochem Photobiol B-Biol 64: 144–161CrossRefGoogle Scholar
  8. Boulton ME, Sliney D (2000) Non-ionising radiation and the eye. In: Baxter P, Adams P, Aw TC, Cockcroft A, Harrington J (eds) Hunter's occupational diseases. Edward Arnold, London Boston, pp 419–438Google Scholar
  9. Boulton M, Docchio F, Dayhew-Barker P, Ramponi R, Cubeddu R (1990) Age-related changes in the morphology, absorption and fluorescence of melanosomes and lipofuscin granules of the retinal pigment epithelium. Vision Res 30: 1291–1303PubMedCrossRefGoogle Scholar
  10. Busch EM, Gorgels TG, van Norren D (1999) Temporal sequence of changes in rat retina after UV-A and blue light exposure. Vision Res 39: 1233–1247PubMedCrossRefGoogle Scholar
  11. Cideciyan AV, Swider M, Aleman TS, Roman MI, Sumaroka A, Schwartz SB, Stone EM, Jacobson SG (2007) Reduced – illuminance autofluorescence imaging in ABCA4-associated retinal degenerations. J Opt Soc Am A Opt Image Sci Vis 24 (5): 1457–1467PubMedCrossRefGoogle Scholar
  12. Cideciyan AV, Jacobson SG, Aleman TS, Gu D, Pearce-Kelling SE, Sumaroka A, Acland GM, Aguirre GD (2005) In vivo dynamics of retinal injury and repair in the rhodopsin mutant dog model of human retinitis pigmentosa. Proc Natl Acad Sci USA 102 (14): 5233–5238PubMedCrossRefGoogle Scholar
  13. Crockett RS, Lawwill T (1984) Oxygen dependence of damage by 435 nm light in cultured retinal epithelium. Curr Eye Res 3: 209–215PubMedCrossRefGoogle Scholar
  14. Cruickshanks KJ, Klein R, Klein BEK (1993) Sunlight and age-related macular degeneration. The Beaver Dam Eye Study. Arch Ophthalmol 111: 514–518PubMedGoogle Scholar
  15. Crüts B, van Etten L, Törnqvist H, Blomberg A, Sandström T, Mills NL, Borm PJ (2008) Exposure to diesel exhaust induces changes in EEG in human volunteers. Part Fibre Toxicol 11: 5: 4Google Scholar
  16. Darzins P, Mitchell P, Heller RF (1997) Sun exposure and age-related macular degeneration – an Australian case-control study. Ophthalmology 104: 770–776PubMedGoogle Scholar
  17. Davidson PC, Sternberg P (1993) Potential retinal phototoxicity. Am J Ophthalmol 116: 497–501PubMedGoogle Scholar
  18. Davies S, Elliott MH, Floor E, Truscot TG, Zareba M, et al (2001) Photocytotoxicity of lipofuscin in human retinal pigment epithelial cells. Free Radical Biol Med 31: 256–265CrossRefGoogle Scholar
  19. De Lint PJ, van Norren D, Toebosh AMW (1992) Effect of body temperature on threshold for retinal light damage. Invest Ophthalmol Vis Sci 33: 2382–2387PubMedGoogle Scholar
  20. Delori FC, Goger DG, Dorey CK (2001) Age-related accumulation and spatial distribution of lipofuscin in RPE of normal subjects. Invest Ophthalmol Vis Sci 42: 1855–1866PubMedGoogle Scholar
  21. Dillon J (1991) The photophysics and photobiology of the eye. J Photochem Photobiol B-Biol 10: 23–40CrossRefGoogle Scholar
  22. Dorey CK, Delori FC Akeo K (1990) Growth of cultured RPE and endothelial cells is inhibited by blue light but not green colored light. Curr Eye Res 9: 549–559PubMedCrossRefGoogle Scholar
  23. Egorov SYu, Krasnovsky AA, Bashtanov MYe, Moronov EA, Ludnikova TA, Kritsky MS (1999) Photosensitization of singlet oxygen formation by pterins and flavins. Time-resolved studies of oxygen phosphorescence under laser excitation. Biochemistry (Moscow) 64: 1117–1121Google Scholar
  24. Eye Disease Case Control Study Group (1992) Risk factors for neovascular age-related macular degeneration. Arch Ophthalmol 110: 1701–1708Google Scholar
  25. Fain GL, Matthews HR, Cornwall MC Koutaloslos Y (2001) Adaptation in vertebrate photoreceptors. Physiol Rev 81: 117–151PubMedGoogle Scholar
  26. Feeneyburns L, Hilderbrand ES Eldridge S (1984) Aging human RPE-morphometric analysis of macular, equatorial, and peripheral cells. Invest Ophthalmol Vis Sci 25: 195–200Google Scholar
  27. Foote CS (1981) Photooxidation of biological model compounds. In: Rodgers MAJ, Powers EL (eds) Oxygen and oxy-radicals in chemistry and biology. Academic Press, New York, pp 425–439Google Scholar
  28. Frigg R, Wenzel A, Samardzija M, Oesch B, Wariwoda H, Navarini AA, Seeliger MW, Tanimoto N, Remé C, Grimm (2006) The prion protein is neuroprotective against retinal degeneration in vivo. Exp Eye Res 83 (6): 1350–1358PubMedCrossRefGoogle Scholar
  29. Gorgels TGMF, van Norren D (1995) Ultraviolet and green light cause different types of damage in rat retina. Invest Ophthalmol Vis Sci 36: 851–863PubMedGoogle Scholar
  30. Green WR, Robertson DM (1991) Pathologic findings of photic retinopathy in the human eye. Am J Ophthalmol 112: 520–527PubMedGoogle Scholar
  31. Grimm C, Reme CE, Rol PO, Williams TP (2000) Blue light's effects on rhodopsin: photoreversal of bleaching in living rat eyes. Invest Ophthalmol Vis Sci 41: 3984–3990PubMedGoogle Scholar
  32. Gu D, Beltran WA, Li Z, Acland GM, Aguirre GD (2007) Clinical light exposure, photoreceptor degeneration, and AP-1 activation: a cell death or cell survival signal in the rhodopsin mutant retina? Invest Ophthalmol Vis Sci 48 (11): 4907–4918PubMedCrossRefGoogle Scholar
  33. Ham WT, Mueller HA, Ruffolo JJ, Millen JE, Cleary SF, et al (1984) Basic mechanisms underlying the production of photochemical lesions in the mammalian retina. Curr Eye Res 3: 165–174PubMedCrossRefGoogle Scholar
  34. Ham WT, Mueller HA, Ruffolo JJ, Guerry D Guerry RK (1982) Action spectrum for retinal injury from near-ultraviolet radiation in the aphakic monkey. Am J Ophthalmol 9: 299–306Google Scholar
  35. Ham WT, Ruffolo JJ, Mueller HA, Clarke AM, Moon ME (1978) Histologic analysis of photochemical lesions produced in rhesus retina by short-wavelength light. Invest Ophthalmol Vis Sci 17: 1029–1035PubMedGoogle Scholar
  36. Ham WT, Mueller HA, Sliney DH (1976) Retinal sensitivity to damage from short-wavelength light. Nature 260: 153–155PubMedCrossRefGoogle Scholar
  37. Hammond BR, Wooten BR, Snodderly DM (1996) Cigarette smoking and retinal carotenoids: implications for age-related macular degeneration. Vision Res 36: 3003–3009PubMedCrossRefGoogle Scholar
  38. Hao WS, Wenzel A, Obin MS, Chen CK, Brill E, et al (2002) Evidence for two apoptotic pathways in light-induced retinal degeneration. Nature Genet 32: 254–260PubMedCrossRefGoogle Scholar
  39. Heckenlively JR, Rodriguez JA, Daiger SP (1991) Autosomal dominant sectoral retinitis pigmentosa. Two families with transversion mutation in codon 23 of rhodopsin. Arch Ophthalmol 109 (1): 84–91PubMedGoogle Scholar
  40. Heilig P, Thaler A, Kolder HE, Hayreh SS, Snyder JE (1979) Elektroophthalmologische Charakteristika der ischämischen Retinopathie. Klin Monatsbl Augenheilkd 174: 500–501PubMedGoogle Scholar
  41. Hirakawa M, Tanaka M, Tanaka Y, Okubo A, Koriyama C, Tsuji M, Akiba S, Miyamoto K, Hillebrand G, Yamashita T, Sakamoto T (2008) Age-related maculopathy and sunlight exposure evaluated by objective measurement. Br J Ophthalmol (5): 630–634Google Scholar
  42. Hope-Ross W, Mahon GJ, Gardiner TA, Archer B (1993) Ultrastructural findings in solar retinopathy. Eye 7: 29–33PubMedGoogle Scholar
  43. Jacobson SG, Cideciyan AV, Aleman TS, Sumaroka A, Windsor EA, Schwartz SB, Heon E, Stone EM (2008) Photoreceptor layer topography in children with leber congenital amaurosis caused by RPE65 mutations. Invest Ophthalmol Vis Sci 49 (10): 4573–4577PubMedCrossRefGoogle Scholar
  44. Jaffe GJ, Wood IS (1988) Retinal phototoxicity from the operating microscope: a protective effect by the fovea. Arch Ophthalmol 106: 445–446PubMedGoogle Scholar
  45. Jaffe GJ, Irvine AR, Wood IS, Severinghaus JW, Pino GR, Haugen C (1988) Retinal phototoxicity from the operating microscope: the role of inspired oxygen. Ophthalmology 95: 1130–1141PubMedGoogle Scholar
  46. Jensen OL (1982) Pterygium, the dominant eye and the habit to close one eye in the sunlight. Acta Ophthalmol 60 (4): 568–574CrossRefGoogle Scholar
  47. Johnson EJ, Chung HY, Caldarella SM, Snodderly DM (2008) The influence of supplemental lutein and docosahexaenoic acid on serum, lipoproteins, and macular pigmentation. Am J Clin Nutr 87 (5): 1521–1529PubMedGoogle Scholar
  48. Kadyan A, Sandramouli S: Sleep apnoea in the eye clinic Br J Ophthalmol (2007) 91 (11): 1524–1527. Br J Ophthalmol (2009) 93 (1): 132–133; author reply 133CrossRefGoogle Scholar
  49. Kassoff A, Kassoff J, Buehler J, Eglow M, Kaufman F, et al (2001) A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss – AREDS Report No 8. Arch Ophthalmol 119: 1417–1436Google Scholar
  50. Kaushik S, Wang JJ, Flood V, Tan JS, Barclay AW, Wong TY, Brand-Miller J, Mitchell P (2008) Dietary glycemic index and the risk of age-related macular degeneration. Am J Clin Nutr 88 (4): 1104–1110PubMedGoogle Scholar
  51. Kim SR, Jockusch S, Itagaki Y, Turro NJ, Sparrow JR (2008) Mechanisms involved in A2E oxidation. Exp Eye Res 86 (6): 975–982PubMedCrossRefGoogle Scholar
  52. Klein R, Klein BEK, Cruickshanks KJ (1999) The prevalence of age-related maculopathy by geographic region and ethnicity. Prog Retin Eye Res 18: 371PubMedCrossRefGoogle Scholar
  53. Klein R, Klein BEK, Jensen SC, Cruickshanks KJ (1998) The relationship of ocular factors to the incidence and progression of age-related maculopathy. Arch Ophthalmol 116: 506–513PubMedGoogle Scholar
  54. Koenekoop RK (2008) Successful RPE65 gene replacement and improved visual function in humans. Ophthalmic Genet 29 (3): 89–91PubMedCrossRefGoogle Scholar
  55. Komáromy AM, Acland GM, Aguirre GD (2008) Operating in the dark: a night-vision system for surgery in retinas susceptible to light damage. Arch Ophthalmol 126 (5): 714–717PubMedCrossRefGoogle Scholar
  56. Kopitz J, Holz FG, Kaemmerer E, Schutt F (2004) Lipids and lipid peroxidation products in the pathogenesis of age-related macular degeneration. Biochimie 86 (11): 825–831PubMedCrossRefGoogle Scholar
  57. Kraff MC, Sanders DR, Jampol LM, Lieberman HL (1985) Effect of an ultraviolet-filtering intraocular-lens on cystoid macular edema. Ophthalmology 92: 366–369PubMedGoogle Scholar
  58. Kremers JJ, van Norren D (1989) Retinal damage in macaque after white light exposures lasting ten minutes to twelve hours. Invest Ophthalmol Vis Sci (6): 1032–1040Google Scholar
  59. LaVail MM, Gorrin GM (1987) Protection from light damage by ocular pigmentation: analysis using experimental chimeras and translocation mice. Exp Eye Res 44: 877–889PubMedCrossRefGoogle Scholar
  60. Lerman S (1987) Light – induced changes in ocular tissues. In: Miller D (ed) Clinical light damge to the eye. Springer, New York, pp 183–215Google Scholar
  61. Lessel MR, Thaler A, Heilig P, Jantsch W, Scheiber V (1991) Intraoperative retinal light damage reflected in electro-physiologic data. Doc Ophthalmol 76: 323–333PubMedCrossRefGoogle Scholar
  62. Li J, Xue Y, Han B, Li Q, Liu L, Xiao T, Li W (2008) Application of X-ray phase contrast imaging technique in detection of pulmonary lesions induced by multi-walled carbon nanotubes in rats. J Nanosci Nanotechnol 8 (7): 3357–3362PubMedCrossRefGoogle Scholar
  63. Liang FQ, Godley BF (2003) Oxidative stress-induced mitochondrial DNA damage in human retinal pigment epithelial cells: a possible mechanism for RPE aging and age-related macular degeneration. Exp Eye Res 76: 397–403PubMedCrossRefGoogle Scholar
  64. Linsenmeier RA (1986) Effects of light and darkness on oxygen distribution and consumption in the cat retina. J Gen Physiol 88: 521–542PubMedCrossRefGoogle Scholar
  65. Maier R, Heilig P, Winker R, Neudorfer B, Hoeranter R, Ruediger H (2005) Welder's maculopathy? Int Arch Occup Environ Health 78 (8): 681–685PubMedCrossRefGoogle Scholar
  66. Mainster M, Ham W, Delori F (1983) Potential retinal hazards. Instrument and environmental light sources. Ophthalmology 90: 927–932PubMedGoogle Scholar
  67. Margrain TH, Boulton M, Marshall J, Sliney DH (2004) Do blue light filters confer protection against age-related macular degeneration? Prog Retin Eye Res 23 (5): 523–531PubMedCrossRefGoogle Scholar
  68. Marshall J (1985) Radiation and the ageing eye. Ophthalmic Physiol Opt 5: 241–263PubMedCrossRefGoogle Scholar
  69. Marshall J (1991) The effects of ultraviolet radiation and blue light on the eye. In: Marshall J (ed) The susceptible visual apparatus. Vision and visual disfunction, vol 16. The Macmillan Press, CRC Press, Boca Raton, FL, pp 54–66Google Scholar
  70. Mellerio J (1994) Light effects on the retina. In: Albert DM, Jakobiec FA (eds) Principles and practice of ophthalmology: Basic sciences. Saunders, Philadelphia, pp 1326–1345Google Scholar
  71. Michels M, Lewis H, Abramov GW, Han DP, Mieler WF, Neitz J (1992) Macular phototoxicity caused by fiberoptic endoillumination during pars-plana vitrectomy. Am J Ophthalmol 114: 287–296PubMedGoogle Scholar
  72. Michels M, Sternberg P (1990) Operating microscope-induced retinal phototoxicity-pathophysiology, clinical manifestations and prevention. Surv Ophthalmol 34: 237–252PubMedCrossRefGoogle Scholar
  73. Nguyen-Khoa BA, Goehring EL Jr, Werther W, Gower EW, Do DV, Jones JK (2008) Hospitalized cardiovascular diseases in neovascular age-related macular degeneration. Arch Ophthalmol 126 (9): 1280–1286PubMedCrossRefGoogle Scholar
  74. Noell WK, Albrecht R (1971) Irreversible effects of visible light on the retina: role of vitamin A. Science 172: 76–80PubMedCrossRefGoogle Scholar
  75. Noell WK, Walker V, Kang B, Berman S (1966) Retinal damage by visible light. Invest Ophthalmol Vis Sci 5: 450–473Google Scholar
  76. Okada T, Ernst OP, Palczewski K, Hofmann KP (2001) Activation of rhodopsin: new insights from structural and biochemical studies. Trends Biochem Sci 26: 318–324PubMedCrossRefGoogle Scholar
  77. Organisciak DT, Noell WK (1977) The rod outer segment phospholipid/opsin ratio of rats maintained in darkness or cyclic light. Invest Ophthalmol Vis Sci 16: 188–190PubMedGoogle Scholar
  78. Organisciak DT, Winkler BS (1994) Retinal light damage: practical and theoretical considerations. Prog Ret Eye Res 13: 1–29CrossRefGoogle Scholar
  79. Osborne N, et al (2006) A hypothesis to suggest that light is a risk factor in glaucoma and the mitochondrial optic neuropathies. Br J Ophthalmol 90: 237–241PubMedCrossRefGoogle Scholar
  80. Pautler EL, Morita M, Beezley B (1989) Reversible and irreversible blue light damage to the isolated, mammalian pigment epithelium. In: LaVail MM, Anderson RE, Hollyfield JG (eds) Inherited and environmentally induced retinal degenerations. Alan R. Liss, New York, pp 555–567Google Scholar
  81. Peeters A, Magliano DJ, Stevens J, Duncan BB, Klein R, Wong TY (2008) Changes in abdominal obesity and age-related macular degeneration: the atherosclerosis risk in communities study. Arch Ophthalmol 126 (11): 1554–1560PubMedCrossRefGoogle Scholar
  82. Pepe IM (1999) Rhodopsin and phototransduction. J Photochem Photobiol B: Biol 48: 1–10CrossRefGoogle Scholar
  83. Pitts GD (1993) Ocular effects of radiant energy. In: Pitt DG, Kleinstein RN (eds) Environmental vision. Butterworth-Heinemann, Boston, pp 151–220Google Scholar
  84. Pollack A, Marcovich A, Bukelman A, Oliver M (1996) Age related macular degeneration after extracapsular cataract extraction with intraocular lens implantation. Ophthalmology 103: 1546–1554PubMedGoogle Scholar
  85. Provis JM, Penfold PL, Cornish EE, Sandercoe TM, Madigan MC (2005) Anatomy and development of the macula: specialisation and the vulnerability to macular degeneration. Clin Exp Optom 88 (5): 269–281PubMedCrossRefGoogle Scholar
  86. Rapp LM, Smith SC (1992) Morphologic comparisons between rhodopsin-mediated and short-wavelength classes of retinal light damage. Invest Ophthalmol Vis Sci 33: 3367–3377PubMedGoogle Scholar
  87. Reeves JF, Davies SJ, Dodd NJ, Jha AN (2008) Hydroxyl radicals (*OH) are associated with titanium dioxide (TiO (2)) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells. Mutat Res 640 (1–2): 113–122Google Scholar
  88. Reinhard J, Messias A, Dietz K, Mackeben M, Lakmann R, Scholl HP, Apfelstedt-Sylla E, Weber BH, Seeliger MW, Zrenner E, Trauzettel-Klosinski S (2007) Quantifying fixation in patients with Stargardt disease. Vision Res 47 (15): 2076–2085PubMedCrossRefGoogle Scholar
  89. Remé CE, Hafezi F, Marti A, Munz K, Reinboth RR (1998) Light damage to retina and retinal pigment epithelium. In: Marmor M, Wolfensberger T (eds) The retinal pigment epithelium. Oxford University Press, Oxford, pp 563–586Google Scholar
  90. Richer S, Devenport J, Lang JC (2007) Differential temporal responses of macular pigment optical density in patients with atrophic age-related macular degeneration to dietary supplementation with xanthophylls. Optometry 78 (5): 213–219PubMedGoogle Scholar
  91. Rózanowska M, Sarna T (2005) Light-induced damage to the retina: role of rhodopsin chromophore revisited. Photochem Photobiol 81 (6): 1305–1330PubMedCrossRefGoogle Scholar
  92. Rozanowska M, Jarvisevans J, Korytowski W, Boulton ME, Burke JM, et al (1995) Blue light-induced reactivity of retinal age pigment in vitro generation of oxygen-reactive species. J Biol Chem 270: 18825–18830PubMedCrossRefGoogle Scholar
  93. Ruffolo JJ, Ham WT, Mueller HA, Millen JE (1984) Photochemical lesions in the primate retina under conditions of elevated blood-oxygen. Invest Ophthalmol Vis Sci 25: 893–898PubMedGoogle Scholar
  94. Sarks JP, Sarks SH, Killingsworth MC (1988) Evolution of geographic atrophy of the retinal-pigment epithelium. Eye 2: 552–577PubMedGoogle Scholar
  95. Schmidt SY, Peisch RD (1986) Melanin concentration in normal human retinal pigment epithelium. Invest Ophthalmol Vis Sci 27: 1063–1067PubMedGoogle Scholar
  96. Seddon JM, Reynolds R, Maller J, Fagerness JA, Daly MJ, Rosner B (2008) Prediction model for prevalence and incidence of advanced age-related macular degeneration based on genetic, demographic, and environmental variables. Invest Ophthalmol Vis Sci 50: 2044–2053PubMedCrossRefGoogle Scholar
  97. Seitsonen SP, Onkamo P, Peng G, Xiong M, Tommila PV, Ranta PH, Holopainen JM, Moilanen JA, Palosaari T, Kaarniranta K, Meri S, Immonen IR, Järvelä IE (2008) Multifactor effects and evidence of potential interaction between complement factor H Y402H and LOC387715 A69S in age-related macular degeneration. PLoS ONE.3 (12): e3833PubMedCrossRefGoogle Scholar
  98. Shamsi FA, Boulton M (2001) Inhibition of RPE lysosomal and antioxidant activity by the age pigment lipofuscin. Invest Ophthalmol Vis Sci 42: 3041–3046PubMedGoogle Scholar
  99. Simonet BM, Valcárcel M (2009) Monitoring nanoparticles in the environment. Anal Bioanal Chem 393 (1): 17–21PubMedCrossRefGoogle Scholar
  100. Sliney DH (1991) Measurement of light and the geometry of exposure of the human eye. In: Marshall J (ed) The susceptible visual apparatus, Vol 16. Macmillan Press, London, pp 20–23Google Scholar
  101. Sliney D, Wolbarsht M (1980) Damage mechanism. In: Safety with laser and other optical sources. Plenum, New York London, pp 203–206Google Scholar
  102. Smith W, Mitchell P, Leeder SR (1996) Smoking and age-related maculopathy – the Blue Mountains Eye Study. Arch Ophthalmol 114: 1518–1523PubMedGoogle Scholar
  103. Souied EH, Reid SN, Piri NI, Lerner LE, Nusinowitz S, Farber DB (2008 ) Non-invasive gene transfer by iontophoresis for therapy of an inherited retinal degeneration. Exp Eye Res 87 (3): 168–175Google Scholar
  104. Sorgato MC, Bertoli A (2009) From cell protection to death: may Ca2+ signals explain the chameleonic attributes of the mammalian prion protein? Biochem Biophys Res Commun 379 (2): 171–174PubMedCrossRefGoogle Scholar
  105. Sparrow JR, Miller AS, Zhou J (2004) Blue light-absorbing intraocular lens and retinal pigment epithelium protection in vitro. J Cataract Refract Surg 30: 873–878PubMedCrossRefGoogle Scholar
  106. Sparrow JR, Zhou JL, Cai BL (2003) DNA is a target of the photodynamic effects elicited in A2E-laden RPE by blue-light illumination. Invest Ophthalmol Vis Sci 44: 2245–2251PubMedCrossRefGoogle Scholar
  107. Sparrow JR, Zhou J, Ben-Shabat S, Vollmer H, Itagaki Y, et al (2002) Involvement of oxidative mechanisms in blue-light-induced damage to A2E-laden RPE. Invest Ophthalmol Vis Sci 43: 1222–1227PubMedGoogle Scholar
  108. Sparrow JR, Cai BL (2001) Blue light-induced apoptosis of A2E-containing RPE: involvement of caspase-3 and protection by bcl-2. Invest Ophthalmol Vis Sci 42: 1356–1362PubMedGoogle Scholar
  109. Sparrow JR, Nakanishi K, Parish CA (2000) The lipofuscin fluorophore A2E mediates blue light-induced damage to retinal pigmented epithelial cells. Invest Ophthalmol Vis Sci 41: 1981–1989PubMedGoogle Scholar
  110. Sykes SM, Robison WG, Waxler M, Kuwabara T (1981) Damage to the monkey retina by broad-spectrum fluorescent light. Invest Ophthalmol Vis Sci 20: 425–434PubMedGoogle Scholar
  111. Taylor HR, West S, Munoz B, Rosenthal FS, Bressler SB, et al (1992) The long-term effects of visible-light on the eye. Arch Ophthalmol 110: 99–104PubMedGoogle Scholar
  112. Taylor HR, Munoz B, West S, Bressler NM, Bressler SB, et al (1990) Visible light and risk of age-related macular degeneration. Trans Am Ophthalmol Soc 88: 163–173PubMedGoogle Scholar
  113. Thaler A, Heilig P (1971) ERG in a case of achromatopsia congenita and sectoral retinopathia pigmentosa. Vision Res 11: 1217PubMedCrossRefGoogle Scholar
  114. Thaler A, Heilig P, Slezak H (1973) Sectoral retinopathia pigmentosa. Involvement of the retina and pigment epithelium as reflected in bioelectric responses. Docum Ophthalmol Proc Ser II: 237–243Google Scholar
  115. Tso MOM (1989) Experiments on visual cells by nature and man: in search of treatment for photoreceptor degeneration. Invest Ophthalmol Vis Sci 12: 2430–2454Google Scholar
  116. Tso MOM, Fine BS (1979) Repair and late degeneration of the primate foveola after injury by argon laser. Invest Ophthalmol Vis Sci 18: 447–461PubMedGoogle Scholar
  117. Tuntivanich N, Pittler SJ, Fischer AJ, Omar G, Kiupel M, Weber AJ, Yao S, Steibel JP, Wali Khan N, Petersen-Jones S (2009) Characterization of a canine model of autosomal recessive retinitis pigmentosa due to a PDE6A mutation. Invest Ophthalmol Vis Sci 50: 801–813PubMedCrossRefGoogle Scholar
  118. Werner JS, Steele VG, Pfoff DS (1989) Loss of human photoreceptor sensitivity associated with chronic exposure to ultraviolet-radiation. Ophthalmology 96: 1552–1558PubMedGoogle Scholar
  119. West SK, Rosenthal FS, Bressler NM, Bressler SB, Munoz B, et al (1989) Exposure to sunlight and other risk-factors for age-related macular degeneration. Arch Ophthalmol 107: 875–879PubMedGoogle Scholar
  120. Win-Shwe TT, Yamamoto S, Fujitani Y, Hirano S, Fujimaki H (2008) Spatial learning and memory function-related gene expression in the hippocampus of mouse exposed to nanoparticle-rich diesel exhaust. Neurotoxicology 29 (6): 940–947PubMedCrossRefGoogle Scholar
  121. Zhou J, Kim S, Westlund BS, Sparrow JR (2009) Complement activation by bisretinoid constituents of RPE lipofuscin. Invest Ophthalmol Vis Sci 50: 1392–1399PubMedCrossRefGoogle Scholar
  122. Zhou J, Jang YP, Chang S, Sparrow JR (2008) OT-674 suppresses photooxidative processes initiated by an RPE lipofuscin fluorophore Photochem Photobiol 84 (1): 75–80PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of OphthalmologyMedical University of ViennaViennaAustria
  2. 2.Private Hospital RudolfinerhausViennaAustria
  3. 3.Department of Occupational MedicineMedical University of ViennaViennaAustria

Personalised recommendations