Skip to main content
Log in

Neueste technologische Entwicklungen in der ophthalmologischen optischen Kohärenztomographie

Latest technological developments in ophthalmic OCT

  • Originalarbeiten
  • Published:
Spektrum der Augenheilkunde Aims and scope Submit manuscript

Zusammenfassung

Fundamental neue Signaldetektionstechniken ('Frequency Domain' oder 'Spectral Domain') sowie Entwicklungen breitbandiger (polychromatischer), kostengünstiger Lichtquellen ermöglichten jüngst dreidimensionale, hochauflösende ophthalmologische optische Kohärenztomographie (Optical Coherence Tomography, OCT) der lebenden menschlichen Netzhaut. Damit besitzt OCT das Potential eine optische Biopsietechnik darzustellen, bei der Gewebe ohne Entnahme berührungslos mit einer Auflösung untersucht werden kann, die nahezu jener entspricht, die mit herkömmlicher Histopathologie erreicht wird. Dreidimensionale hochauflösende OCT könnte dadurch die frühzeitige Diagnose von weltweit zu Erblindung führenden Augenerkrankungen sowie die Verlaufskontrolle neuester ophthalmologischer Therapien ermöglichen und außerdem signifikant zum besseren Verständnis der Pathogenese beitragen. Neue Lasertechnologie ermöglicht erstmals den Einsatz von OCT in alternativen Wellenlängenbereichen zur verbesserten Visualisierung der Aderhaut. Die Kombination hochauflösender OCT mit adaptiver Optik zur verbesserten transversalen Auflösung stellt einen wesentlichen Schritt in Richtung retinaler Bildgebung mit zellulärer Auflösung dar. Weitere Entwicklungen sehen OCT-Erweiterungen vor, bei denen tiefenaufgelöst funktionelle Netzhauteigenschaften berührungslos ermittelt werden können. Die ophthalmologische optische Kohärenztomographie besitzt aufgrund der neuesten technologischen Entwicklungen somit das Potential, als berührungslose optische Biopsiemethode in Zukunft ortsaufgelöste funktionelle Gewebseigenschaften auf zellulärem Niveau zu ermitteln.

Summary

Recent developments of ultrabroad bandwidth light sources and detection technology have enabled significant improvement of ophthalmic axial OCT imaging resolution, demonstrating the potential of ultrahigh resolution OCT (UHR OCT) to perform three-dimensional non-invasive optical biopsy, i. e. the in vivo visualization of microstructural morphology in situ, which had previously only been possible with histopathology. Therefore UHR OCT allows detection of intraretinal changes that can be used for diagnosis of retinal disease in its early stages, when treatment is most effective and irreversible damage can be prevented or delayed. Furthermore it may provide a better understanding of the pathogenesis of several macular pathologies as well as the development of new therapy approaches. Other recent developments of ophthalmic OCT include nearly cellular level resolution, depth resolved functional imaging of the living human retina as well as OCT imaging with enhanced penetration into the choroid by employing novel wavelength regions. Using adaptive optics to correct higher order aberrations of the human eye in combination with high speed, three-dimensional UHR OCT enables unprecedented in vivo volumetric visualization of intraretinal morphology. Preliminary results demonstrate visualization of retinal features that might correspond to the terminal bars of photoreceptors at the external limiting membrane. In addition, extensions of UHR OCT are developed that should provide non-invasive depth resolved functional imaging of the retina, including spectroscopic, blood flow or physiologic tissue information. These extensions of OCT should not only improve image contrast, but should also enable the differentiation of retinal pathologies via localized spectroscopic properties or functional state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  • Fercher AF, Roth E (1986) Ophthalmic laser interferometer. Proc SPIE 658: 48–51

    Google Scholar 

  • Drexler W, Baumgartner A, Findl O, et al (1997) (Sub)micrometer precision biometry of the anterior segment of the human eye. Invest Ophthalmol Vis Sci 38 (7): 1304–1313

    PubMed  CAS  Google Scholar 

  • Huang D, Swanson EA, Lin CP, et al (1991) Optical coherence tomography. Science 254: 1178–1181

    Article  PubMed  CAS  Google Scholar 

  • Fercher AF, Drexler W, Hitzenberger CK, et al (2003) Optical coherence tomography. Reports on Progress in Physics 6: 239–303

    Article  Google Scholar 

  • Bouma B, Tearney J (2002) Handbook of optical coherence tomography, Marcel Dekker Inc.

  • Fujimoto JG (2003) Optical coherence tomography for ultrahigh resolution in vivo imaging. Nature Biotechnology 21 (11): 1361–1367

    Article  PubMed  CAS  Google Scholar 

  • Drexler W, Morgner U, Kärtner FX, et al (1999) In vivo ultrahigh resolution optical coherence tomography. Optics Letters 24 (17): 1221–1223

    PubMed  CAS  Google Scholar 

  • Drexler W, Morgner U, Ghanta RK, et al (2001) Ultrahigh resolution optical coherence tomography of the human retina. Nature Medicine 7 (4): 502–507

    Article  PubMed  CAS  Google Scholar 

  • Drexler W (2004) Ultrahigh resolution optical coherence tomography. J Biomed Optics 9 (1): 47–74

    Article  Google Scholar 

  • Drexler W, Sattmann H, Hermann B, et al (2003) Enhanced visualization of macular pathology using ultrahigh resolution optical coherence tomography. Arch Ophthalmol 121: 695–706

    Article  PubMed  Google Scholar 

  • Fercher AF, Hitzenberger CK, Kamp G, El-Zaiat SY (1995) Measurement of intraocular distances by backscattering spectral interferometry. Optics Comm 117: 43–48

    Article  CAS  Google Scholar 

  • Leitgeb RA, Hitzenberger CK, Fercher AF (2003) Performance of Fourier domain vs. time domain optical coherence tomography. Optics Expr 11: 889–894

    CAS  Google Scholar 

  • Choma MA, Sarunic MV, Yang C, Izatt JA (2003) Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Optics Expr 11: 2183

    Google Scholar 

  • De Boer JF, Cense B, Park BH, Pierce MC, Tearney GJ, Bouma BE (2003) Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett 28: 2067–2069

    PubMed  Google Scholar 

  • Swanson EA, Huang D, Hee MR, et al (1992) High-speed optical coherence reflectometry. Optics Letters 17 (2): 151–153

    Article  CAS  PubMed  Google Scholar 

  • Hitzenberger CK (1991) Optical measurement of the axial eye length by laser Doppler interferometer. Invest Ophthalmol Vis Sci 32: 616–624

    PubMed  CAS  Google Scholar 

  • Hitzenberger CK, Drexler W, Fercher AF (1992) Measurement of corneal thickness by laser Doppler interferometry. Invest Ophthalmol Vis Sci 33: 98–103

    PubMed  CAS  Google Scholar 

  • Fercher AF, Hitzenberger CK, Drexler W, Kamp G, Sattmann H (1993) In vivo optical coherence tomography. Am J Ophthalmol 116 (1): 113–114

    PubMed  CAS  Google Scholar 

  • Baumgartner A, Hitzenberger CK, Sattmann H, Drexler W, Fercher AF (1998) Signal and resolution enhancements in dual beam optical coherence tomography of the human eye. J Biomed Opt 3 (1): 45–54

    Article  Google Scholar 

  • Ko TH, Fujimoto JG, Duker JS, Paunescu LA, Drexler W, Baumal CR, Puliafito CA, Reichel E, Rogers AH, Schuman JS (2004) Comparison of ultrahigh- and standard-resolution optical coherence tomography for imaging macular hole pathology and repair. Ophthalmology 111: 2033–2043

    Article  PubMed  Google Scholar 

  • Schmidt-Erfurth U, Leitgeb RA, Michels S, Povazay B, Sacu S, Hermann B, Ahlers C, Sattmann H, Scholda C, Fercher AF, Drexler W (2005) Three-dimensional ultrahigh resolution optical coherence tomography of macular pathologies. Invest Ophthalmol Vis Sci 46 (9): 3393–3402

    Article  PubMed  Google Scholar 

  • Gloesmann M, Hermann B, Schubert C, Sattmann H, Ahnelt PK, Drexler W (2003) Histological correlation of pig retinal stratification with ultrahigh resolution optical coherence tomography. Invest Ophthalmol Vis Sci 44: 1696–1703

    Article  PubMed  Google Scholar 

  • Anger EM, Hermann B, Schubert C, Sattmann H, Morgan JE, Ahnelt PK, Drexler W (2004) Ultrahigh resolution optical coherence tomography of the monkey fovea. Identification of retinal sublayers by correlation with semithin histology sections. Exp Eye Res 78: 1117–1125

    Article  PubMed  CAS  Google Scholar 

  • Povazay B, Bizheva K, Hermann B, Unterhuber A, Sattmann H, Fercher AF, Drexler W, Schubert C, Ahnelt PK, Mei M, Holzwarth R, Wadsworth W, Knight J, Russell P (2003) Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm. Opt Exp 11 (17): 1980–1986

    Article  CAS  Google Scholar 

  • Unterhuber A, Považay B, Hermann B, Sattmann H, Chavez-Pirson A, Drexler W (2005) In vivo rental optical coherence tomography at 1040 nm – enhanced penetration into the choroids. Opt Exp 13 (9): 3252–3258

    Article  Google Scholar 

  • Hermann B, Fernández EJ, Unterhuber A, Sattmann H, Fercher AF, Drexler W, Prieto PM, Artal P (2004) Adaptive optics ultrahigh resolution optical coherence tomography. Optics Letters 29 (18): 1–3

    Article  Google Scholar 

  • Fernandez EJ, Povazay B, Hermann B, Unterhuber A, Sattmann H, Prieto PM, Leitgeb R, Ahnelt P, Artal P, Drexler W (2005) Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator. Vision Res 45 (28): 3432–3444. Epub 2005 Oct 24

    Article  PubMed  Google Scholar 

  • Morgner U, Drexler W, Kärtner FX, Li XD, Pitris C, Ippen EP, Fujimoto JG (2000) Spectroscopic optical coherence tomography. Optics Letters 25 (2): 111–113

    PubMed  CAS  Google Scholar 

  • Bizheva K, Pflug R, Hermann B, Povazay B, Sattmann H, Anger E, Reitsamer H, Popov S, Tylor JR, Unterhuber A, Qui P, Ahnlet PK, Drexler W (2006) Optophysiology: depth resolved probing of retinal physiology with functional ultrahigh resolution optical coherence tomography. PNAS 103 (13): 5066–5071

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Drexler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drexler, W. Neueste technologische Entwicklungen in der ophthalmologischen optischen Kohärenztomographie. Spektrum Augenheilkd. 21, 3–12 (2007). https://doi.org/10.1007/s00717-006-0173-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00717-006-0173-x

Schlüsselwörter

Key words

Navigation