Skip to main content
Log in

Planning orofacial reconstruction with prefabricated composite grafts in noma-surgery

  • Originalarbeit
  • Published:
Stomatologie

SUMMARY

Patients who survive noma develop a mutilated and disabled face. Intense scarring leads to disfigurement and restriction of jaw movement. The defects extend to nearly all aspects of the face, i.e. facial soft tissue, skull and teeth. Comprehensive treatment of this condition requires restoration of the bony framework with dental implants in order to provide mechanical stability and oral function, as well as full-thickness coverage of the defect and a durable inner lining for the oral and paranasal cavities. Prefabricated complex transplants are able to meet these needs for a complete state-of-the-art reconstruction. In practice this advanced surgical concept requires most precise three-dimensional computer-assisted radiographic analysis and planning with stereolithographic models set-up in an articulator. Only now due to complex pre-surgical planning reconstruction using prefabricated composite transplants achieves a greatly improved flap design, which undoubtedly allows these grafts to represent the highest standard in plastic reconstructive surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Adams L, Knepper A, Krybus W, Meyer-Ebrecht D, Pfeifer G, Ruger R, Witte M (1992) Orientation aid for head and neck surgeons. Innov Tech Biol Med 13: 410–424

    Google Scholar 

  • Altobelli DE, Kikinis R, Mulliken JB, Cline H, Lorensen W, Jolesz F (1993) Computer assisted three-dimensional planning in craniofacial surgery. Plast Reconstr Surg 92(4): 576–686

    Article  PubMed  Google Scholar 

  • Barnett GH, Kormos DW, Steiner CP, Weisenberger J (1993) Intraoperative localisation using an armless, frameless stereotactic wand. J Neurosurg 78: 510–514

    PubMed  Google Scholar 

  • Bechtold JE, Powless SH (1993) The application of computer graphics in foot and ankle surgical planning and reconstruction. Clinics in Podiatric Medicine and Surgery 10(3): 551– 561

    PubMed  Google Scholar 

  • Bill J, Reuther JF, Dittmann W, Kübler N, Meier J, Pistner H, Wittenberg G (1995) Stereolithography in oral and maxillofacial operation planning. Int J Oral Maxillofac Surg 24: 98–103

    Article  PubMed  Google Scholar 

  • Brief J, Edinger D, Hassfeld S, Eggers G (2005) Accuracy of image-guided implantology. Clin Oral Implants Res 16: 495–501

    Article  PubMed  Google Scholar 

  • Bucholz RD, McDurmont L, Smith K, Heilbrun P (1992) Use of optical digitizer in resection of supratentorial tumors. Proceedings, Congress of Neurological Surgeons, Washington DC

  • Chen LS (1985) Surface shading in the Cuberille Enviroment IEEE. Trans Comput Graph Appl 5: 33–43

    Google Scholar 

  • Cutting C, Brookstein FL (1986) 3D-computer-assisted-design of craniofacial surgical procedures: optimisation and interaction with cephalometrie and ct-based models. Plastic and Reconstructive Surgery 77(6): 22–30

    Google Scholar 

  • Drebin R, Carpenter L, Harrahan P (1988) Volume rendering. SIGGRAPH 88: 65–74

    Article  Google Scholar 

  • Ehrice HH, Daiber G, Sonntag R, Strasser W, Lochner M, Schad LR, Lorenz WJ (1992) Interactive 3D graphics workstations in stereotaxy: clinical requirements, algorithms and solutions. In Proceedings of the Second Conference on Visualization in Biomedical Computing, Chapel Hill, NC

  • Enislidis G, Ploder O, Wagner A, Truppe M, Ewers R (1995) Prinzipien der "virtuellen Realität" und deren Anwendung in intraoperativen Navigationshilfesystemen. Acta Chir Austriaca 27: 289–291

    Google Scholar 

  • Fellingham LL, Vogel JH, Lau C, Dev P (1986) Interactive graphics and 3-D modeling for surgery planning and prothesis and implant design. Proc NCGA 3: 132–142

    Google Scholar 

  • Gateno J, Xia J, Teichgraeber JF, Rosen A (2003) A new technique for the creation of a computerized augmented skull model. J Oral Maxillofac Surg 61: 222–227

    Article  PubMed  Google Scholar 

  • Giorgi C, Casolino DS, Ongania E, Franzini A, Broggi G, Pluchino F (1990) Guided Microsurgery by computer-assisted three-dimensional analysis of neuroanatomical data stereotactically acquired. Stereotact Funct Neurosurg 54: 482–487

    Article  PubMed  Google Scholar 

  • Guthrie B, Adler JR (1992) Computer-assisted preoperative planning, interactive surgery, and frameless stereotaxy. Clinical Neurosurgery 38: 112–131

    PubMed  Google Scholar 

  • Heffernan PB, Robb RA (1985) Display and analysis of 4-D medical images. Proc Intl Symp CAR 85: 583–592

    Google Scholar 

  • Hohne KH, Bomans M, Pommert A, Riemer M, Tiede U, Wiebeck G (1990) Rendering tomographic volume data: adequacy of methods for different modalities and organs. In: Hohne, et al (eds) 3D imaging in medicine. NATO ASI Series, F60: 197–215

  • Hill DL, Green SE, Crossman JE, Hawkes DJ, Robinson GP, Ruff CF, Cox TC, Strong AJ, Gleeson MJ (1992) Visualization of multi-modal images for the planning of skull base surgery. In: Proceedings of the Second Conference on Visualization in Biomedical Computing, Chapel Hill, NC, pp 564–573

  • Holle J, Vinzenz K, Würinger E, Kulenkampff KJ, Saidi M (1996) The prefabricated combined scapula flap for bony and soft tissue reconstruction in maxillofacial defects. Plast Reconstr Surg 98: 542–552

    Article  PubMed  Google Scholar 

  • Hull C (1991) Die 3D-Systems-Story. Ciba-Geigy Kunststoff Aspekte 26 [Sonderausgabe 2]

  • Jack CR, Marsh WR, Hirschorn KA, Sharbrough FW, Cascino GD (1990) Electrophysiologic mapping onto 3-D surface display images of the brain. Radiology 176: 413–418

    PubMed  Google Scholar 

  • Karron DB, Cox J, Mishra B (1994) New findings from the Spider-web algorithm: toward a digital morse theory. In: Robb RA (ed) Proceedings of Visualization in Biomedical Computing SPIE, pp 643–657

  • Kato A, Yoshimine T, Hayakawa T, Tomita Y, Ikeda T, Mitomo M, Harada K, Mogami H (1991) A frameless, armless navigational system for computer-assisted neurosurgery. J Neurosurgery 74: 845–849

    Article  Google Scholar 

  • Kikinis R, Cline H, Altobelli D, Halle M, Lorensen W, Jolesz FA (1992) Interactive visualization and manipulation of 3D reconstructions for the planning of surgical procedures. Proceedings of the Second Conference on Visualization in Biomedical Computing, Chapel Hill, NC, pp 559–563

  • Kunstfeld R, Petzelbauer P, Wickenhauser G, Schlenz I, Korak KJ, Vinzenz K, Holle J (2001) The prefabricated scapula flap consist of syngeneic bone, connective tissue, and a self-assembled epithelial coating. Plast Reconstr Surg 108(7): 1908–1914

    Article  PubMed  Google Scholar 

  • Lambrecht T, Brix F (1990) Individual skull model fabrication for craniofacial surgery. Cleft Palate Journal 27(4): 382–387

    Article  PubMed  Google Scholar 

  • Legett WB, Greenberg MM, Gannon WE, Dekel D, Gabe CJ (1991) Surgical technology. The viewing wand: a new system for three-dimensional computed tomography-correlated intraoperative localization. Curr Surg 48: 674–678

    Google Scholar 

  • Lorensen WE, Cline HE, Marching C (1987) A high resolution 3D surface construction algorithm. Computer Graphics 21: 163–169

    Article  Google Scholar 

  • Lotwin RS, Baerg RH (1993) Orthographics: a two-dimensional surgical planning system. Clinics in Podiatric Medicine and Surgery 10(3): 539–549

    PubMed  Google Scholar 

  • Lipinski HG, Struppler A (1989) New trends in computer graphics and computer vision to assist functional neurosurgery. Stereotact Funct Neurosurg 52: 234–241

    Article  PubMed  Google Scholar 

  • Marsh JL, Vannier MW (1983) Surface imaging from computerized tomographic scans. Surgery 94: 159–165

    PubMed  Google Scholar 

  • Miller JV, Breen DE, Lorensen WE, O'Bara RM, Wozny MJ (1991) Geometrically deformed models: a method for extracting closed geometric models from volume data. Computer Graphics 25: 217–227

    Article  Google Scholar 

  • Nitsche N, Hilbert M, Strasser G, Tümmler HP, Arnold W (1992) Einsatz eines berührungsfreien computergestützten Orientier-ungssystems bei Nasennebenhöhlenoperationen I. Technische Grundlagen der Sonarstereometrie. Otorhinolaryngo Nova 3: 173–179

    Article  Google Scholar 

  • Robb RA, Hanson DP (1990) A software system for interactive and quantitative analysis of biomedical images. In: Hohne, et al (eds) 3D imaging in medicine. NATO ASI Series F60: 333–361

  • Robb RA (1994) Surgery simulation with ANALYZE/AVW: a visualization workshop for 3-D display and analysis of multimodality medical images. Proceedings of Medicine Meets Virtual Reality II, SanDiego, CA

  • Roob RA (2002) The virtualization of medicine: a decade of pitfalls and progress. Stud Health Technol Inform 85: 1–7

    Google Scholar 

  • Reinhardt HF, Horstmann A, Gratzl O (1993) Sonic Stereometry in Microsurgical Procedures for Deep-Seated Brain Tumors and Vascular Malformations. Neurosurgery 32: 51–57

    Article  PubMed  Google Scholar 

  • Schlenz I, Korak KJ, Kunstfeld R, Vinzenz K, Plenk H, Holle J (2001) The dermis-prelaminated scapula flap for reconstructions of the hard palate and the alveolar ridge: a clinical and histological evaluation. Plast Reconstr Surg 108(6): 1519–1524

    Article  PubMed  Google Scholar 

  • Stoker NG, Mankovich NJ (1992) Stereolithographic modele for surgical planning. J Oral Maxillofac Surg 50: 466–471

    Article  PubMed  Google Scholar 

  • Swennen G (2005) Clinical applications. In: Swennen G, Schutyser F, Hausamen JE (eds) Three-dimensional cephalometry. A colour atlas and manual. Springer, Heidelberg, pp 307–340

    Google Scholar 

  • Swennen G, Schutyser F, Barth EL, De Groeve P, De Mey A (2006) A new method of 3D cephalometry. Part I. The anatomic cartesian 3D reference system. J Cranio-Fac Surg 17: 314–325

    Article  Google Scholar 

  • Terai H, Shimahara M, Sakinaka Y, Tajima S (1999) Accuracy of integration of dental casts in three-dimensional models. J Oral Maxillofac Surg 57: 662–665

    Article  PubMed  Google Scholar 

  • Vannier MW, Marsh JL, Gado MH, Totty WG, Gilula LA, Evens RG (1983) Clinical applications of 3-dimensional surface reconstruction from CT scans. Electromedia 4: 121–128

    Google Scholar 

  • Verstreken K, Van Cleynenbreugel J, Martens K, Marchal G, van Steenberghe D, Suetens P (1998) An image-guided planning system for endosseous oral implants. IEEE Trans Med Imaging 17: 842–852

    Article  PubMed  Google Scholar 

  • Vinzenz K, Holle J, Würinger E, Kulenkampff KJ (1996) Tissue prefabrication of combined scapula flaps for microsurgical reconstruction in oro-maxillofacial defects. J Cranio-Max Fac Surg 24: 214–223

    Article  Google Scholar 

  • Vinzenz K, Selberherr S (1996) Eingeladener Kommentar zu "Prinzipien der virtuellen Realität" und deren Anwendung in intraoperativen Navigationshilfesystemen. Acta Chir Austriaca 28: 60–61

    Google Scholar 

  • Vinzenz K, Holle J, Würinger E, Kulenkampff KJ, Plenk H Jr (1998) Revascularized composite grafts with inserted implants for reconstructing the maxilla – improved flap design and flap prefabrication. Br J Oral Maxillofac Surg 36: 346–352

    Article  PubMed  Google Scholar 

  • Vinzenz K, Schaudy C, Haider H, Ruf S, Kulenkampff KJ, Würinger E, Holle J (2005) Distraction osteogenesis in reconstructive oral- and maxillofacial surgery. Stomatologie 102(2): 67–78

    Google Scholar 

  • Vinzenz K, Schaudy C, Würinger E (2006) The iliac prefabricated composite graft for dentoalveolar reconstruction: a clinical procedure. J Oral Maxillofac Implants 21: 117–123

    Google Scholar 

  • Vinzenz K, Schaudy C, Haider H, Ruf S, Kulenkampff KJ, Würinger E, Holle J (2007) Osteoplastic reconstruction techniques in noma surgery. Stomatologie 104(1): 11–18

    Google Scholar 

  • Watanabe E, Mayanagi Y, Kosugi Y, Manaka S, Takakura K (1991) Open surgery assisted by the neuronavigator, a stereotactic, articulated, sensitive arm. Neurosurgery 28: 792–799

    Article  PubMed  Google Scholar 

  • Watzinger F, Birkfellner W, Wanschitz F, Millesi W, Schopper C, Sinko K, Huber K, Bergmann H, Ewers R (1999) Positioning of dental implants using computer-aided navigation and an optical tracking system: case report and presentation of a new method. J Craniomaxillofac Surg 27(2): 77–81

    PubMed  Google Scholar 

  • Weinhoffer SL, Berme N, Barnes SZ (1993) Measurement of angular displacements using Hall-effect transducers. Journal of Biomechanics 26: 609–612

    Article  PubMed  Google Scholar 

  • Wickham JEA (1994) Minimally invasive surgery: future developments. BMJ 308: 193–196

    PubMed  Google Scholar 

  • Zinreich SJ, Tebo SA, Long DM, Brem H, Mattox DE, Loury ME, Van der Kolk CA, Koch WM, Kennedy DW, Bryan RN (1993) Frameless stereotaxic integration of CT imaging data: accuracy and initial applications. Radiology 188: 735–742

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Authors' address: C. Schaudy, Abt. Kieferchirurgie, Evangelisches Krankenhaus Wien, Hans-Sachs-Gasse 10-12, 1180 Wien, Austria

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaudy, C., Kulenkampff, KJ., Holle, J. et al. Planning orofacial reconstruction with prefabricated composite grafts in noma-surgery. Stomatologie 104, 25–31 (2007). https://doi.org/10.1007/s00715-007-0025-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00715-007-0025-6

Keywords

Navigation