Journal of Economics

, Volume 115, Issue 2, pp 175–194 | Cite as

The stochastic Mitra–Wan forestry model: risk neutral and risk averse cases

  • Adriana Piazza
  • Bernardo K. Pagnoncelli


We extend the classic Mitra and Wan forestry model by assuming that prices follow a geometric Brownian motion. We move one step further in the model with stochastic prices and include risk aversion in the objective function. We prove that, as in the deterministic case, the optimal program is periodic both in the risk neutral and risk averse frameworks, when the benefit function is linear. We find the optimal rotation ages in both stochastic cases and show that they may differ significantly from the deterministic rotation age. In addition, we show how the drift of the price process affects the optimal rotation age and how the degree of risk aversion shortens it. We illustrate our findings for an example of a biomass function and for different values of the model’s parameters.


Forestry Dynamic programming Risk analysis  Coherent risk measures 

JEL Classification

Q23 C61 D81 



This research was partially funded by Basal Project CMM, Universidad de Chile. A. Piazza acknowledges the financial support of FONDECYT under Project 1140720 and of CONICYT Anillo ACT1106. B. K. Pagnoncelli acknowledges the financial support of FONDECYT under Projects 1120244 and 11130056.


  1. Alvarez LHR, Koskela E (2006) Does risk aversion accelerate optimal forest rotation under uncertainty? J For Econ 12:171–184Google Scholar
  2. Alvarez LHR, Koskela E (2007) Optimal harvesting under resource stock and price uncertainty. J Econ Dynam Control 31:2461–2485CrossRefGoogle Scholar
  3. Alvarez LHR, Koskela E (2007) Taxation and rotation age under stochastic forest stand value. J Environ Econ Manag 54:113–127CrossRefGoogle Scholar
  4. Artzner P, Delbaen F, Eber J, Heath D (1999) Coherent measures of risk. Math Financ 9:203–228CrossRefGoogle Scholar
  5. Birge J, Louveaux F (1997) Introduction to stochastic programming. Springer, USAGoogle Scholar
  6. Blomvall J, Shapiro A (2006) Solving multistage asset investment problems by the sample average approximation method. Math Program 108:571–595CrossRefGoogle Scholar
  7. Chen S, Insley M (2012) Regime switching in stochastic models of commodity prices: an application to an optimal tree harvesting problem. J Econ Dynam Control 36:201–219CrossRefGoogle Scholar
  8. Clarke W, Reed H (1989) The tree-cutting problem in a stochastic environment: the case of age-dependent growth. J Econ Dynam Control 13:569–595CrossRefGoogle Scholar
  9. Di Corato L, Moretto M, Vergalli S (2013) Land conversion pace under uncertainty and irreversibility: too fast or too slow? J Econ 110:45–82CrossRefGoogle Scholar
  10. Delbaen F, Drapeau S, Kupper M (2011) A von Neumann–Morgenstern representation result without weak continuity assumption. J Math Econ 47:401–408CrossRefGoogle Scholar
  11. Dixit A, Pindyck R(1994) Investment under uncertainty, Princeton UPGoogle Scholar
  12. Faustmann M (1995) Berechnung des Wertes welchen Waldboden sowie noch nicht haubare Holzbestände für die Waldwirtschaft besitzen, Allg. Forst-und Jagdzeitung 15 (1849) 441–455. Translated by Linnard W Calculation of the value which forest land and immature stands possess for forestry. J For Econ 1:7–44Google Scholar
  13. Föllmer H, Schied A (2011) Stochastic finance: an introduction in discrete time. De Gruyter, GermanyCrossRefGoogle Scholar
  14. Gjolberg O, Guttormsen A (2002) Real options in the forest: what if prices are mean-reverting? For Policy Econ 4:13–20CrossRefGoogle Scholar
  15. Gong P, Löfgren K (2003) Risk-aversion and the short-run supply of timber. For Sci 49:647–656Google Scholar
  16. Gong P, Löfgren K (2008) Impact of risk aversion on the optimal rotation with stochastic price. Nat Res Model 21:385–415CrossRefGoogle Scholar
  17. Hildebrandt P, Kirchlechner P, Hahn A, Knoke T, Mujica R (2010) Mixed species plantations in Southern Chile and the risk of timber price fluctuation. Eur J For Res 129:935–946CrossRefGoogle Scholar
  18. Insley M (2002) A real option approach to the valuation of a forestry investment. J Environ Econ Manag 44:471–492CrossRefGoogle Scholar
  19. Khajuria RP, Kant S, Laaksonen-Craig S (2009) Valuation of timber harvesting options using a contingent claims approach. Land Econ 85:655–674Google Scholar
  20. Khan MA, Piazza A (2012) On the Mitra–Wan forestry model: a unified analysis. J Econ Theor 147:230–260CrossRefGoogle Scholar
  21. Knoke T, Stimm B, Ammer C, Moog M (2005) Mixed forests reconsidered: a forest economics contribution on an ecological concept. For Ecol Manag 213:102–116CrossRefGoogle Scholar
  22. Laeven R, Denuit M, Dhaene J, Goovaerts M, Kaas R (2006) Risk measurement with equivalent utility principles. Stat Decis 24:1–25CrossRefGoogle Scholar
  23. Latta G, Sjølie H, Solberg B (2013) A review of recent developments and applications of partial equilibrium models of the forest sector. J For Econ 19:250–360Google Scholar
  24. Markowitz H (1952) Portfolio selection. J Financ 7:77–91Google Scholar
  25. Mei B, Clutter M, Harris T (2010) Modeling and forecasting pine sawtimber stumpage prices in the US South by various time series models. Can J For Res 40:1506–1516CrossRefGoogle Scholar
  26. Mitra T, Roy S (2012) Sustained positive consumption in a model of stochastic growth: the role of risk aversion. J Econ Theor 147:850–880CrossRefGoogle Scholar
  27. Mitra T, Wan H (1985) Some theoretical results on the economics of forestry. Rev Econ Stud 52:263–282CrossRefGoogle Scholar
  28. Mitra T, Wan H (1986) On the Faustmann solution to the forest management problem. J Econ Theor 40:229–249CrossRefGoogle Scholar
  29. Murota K (2003) Discrete convex analysis. SIAMGoogle Scholar
  30. Pagnoncelli BK, Piazza A (2012) The optimal harvesting problem under risk aversion. Available at Accessed 8 Oct 2013
  31. Piazza A, Pagnoncelli BK (2014) The optimal harvesting problem under price uncertainty. Ann Oper Res 217:425–445CrossRefGoogle Scholar
  32. Penttinen M (2006) Impact of stochastic price and growth processes on optimal rotation age. Eur J For Res 125:335–343CrossRefGoogle Scholar
  33. Peters H (2012) A preference foundation for constant loss aversion. J Math Econ 48:21–25CrossRefGoogle Scholar
  34. Plantinga A (1998) The optimal timber rotation: an option value approach. For Sci 44:192–202Google Scholar
  35. Riedel F (2004) Dynamic coherent risk measures. Stoch Process Appl 112:185–200CrossRefGoogle Scholar
  36. Rockafellar R, Uryasev S (2000) Optimization of conditional value-at-risk. J Risk 2:21–42Google Scholar
  37. Rockafellar R, Uryasev S (2002) Conditional value-at-risk for general loss distributions. J Bank Financ 26:1443–1471CrossRefGoogle Scholar
  38. Roessiger J, Griess V, Knoke T (2011) May risk aversion lead to near-natural forestry? a simulation study. Forestry 84:527–537CrossRefGoogle Scholar
  39. Ruszczyński A, Shapiro A (2006) Conditional risk mappings. Math Oper Res 31:544–561CrossRefGoogle Scholar
  40. Salo S, Tahvonen O (2002) On equilibrium cycles and normal forests in optimal harvesting of tree vintages. J Environ Econ Manag 44:1–22CrossRefGoogle Scholar
  41. Salo S, Tahvonen O (2003) On the economics of forest vintages. J Econ Dynam Control 27:1411–1435CrossRefGoogle Scholar
  42. Schechter L (2007) Risk aversion and expected-utility theory: a calibration exercise. J Risk Uncertain 35:67–76CrossRefGoogle Scholar
  43. Shapiro A, Dentcheva D, Ruszczyński A (2009) Lectures on stochastic programming: modeling and theory, vol 9. SIAM, PhiladelphiaGoogle Scholar
  44. Tahvonen O, Kallio M (2006) Optimal harvesting of forest age classes under price uncertainty and risk aversion. Nat Res Model 19:557–585CrossRefGoogle Scholar
  45. Thomson T (1992) Optimal forest rotation when stumpage prices follow a diffusion process. Land Econ 68:329–342CrossRefGoogle Scholar
  46. Von Neumann J, Morgenstern O (2007) Theory of games and economic behavior. Commemorative edn, Princeton University Press, USAGoogle Scholar
  47. Yoshimoto A, Shoji I (1998) Searching for an optimal rotation age for forest stand management under stochastic log prices. Eur J Oper Res 105:100–112CrossRefGoogle Scholar
  48. Zhou M, Buongiorno J (2006) Space-time modeling of timber prices. J Agric Res Econ 31:40–56Google Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.Departamento de MatemáticaUniversidad Técnica Federico Santa MaríaValparaísoChile
  2. 2.Escuela de NegociosUniversidad Adolfo IbáñezPeñalolénChile

Personalised recommendations