Skip to main content

Advertisement

Log in

Cambro-Ordovician metamorphism from Lesser Himachal Himalaya and its implication for Gondwana assembly

  • Research
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

As a tectonic window into the Lesser Himachal Himalaya, India, a group of metasediments and gneissic rocks, known as the Jutogh Group and Wangtu Gneissic Complex (WGC), occurs near the Jhakri thrust to the west and Wangtu to the east. In the Jutogh Group, chlorite-mica schist, garnet-staurolite schist and sillimanite-schist develop successively. The formation of chemically zoned garnet, which destabilized low-temperature assemblages, is predicted to be at 550–650 °C and 0.8–0.9 GPa by phase equilibria modelling. The retrograde segment consists of exhumation and cooling, yielding a tight clockwise P–T path. Moreover, textural observations and in-situ U-Th-Pb chemical dating indicate that metasedimentary rocks contain Cambrian monazites. These monazites have ages that cluster around 500 Ma. The ƐNd[1.8Ga] of Jutogh rocks ranges from − 1.0 to -8.1, with depleted mantle-model ages between 3.07 and 2.25 Ga. The garnet core and its leachates yield an Sm-Nd isochron age of 472 Ma. Another Sm-Nd isochron age of 454 Ma is obtained from biotite, garnet rim, and garnet rim leachate. According to phase equilibrium modelling, Sm-Nd dating, and monazite geochronology, the Jutogh Group experienced metamorphism along the northeast margin of Gondwana during the Cambro-Ordovician accretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and materials

The results/data/figures in this manuscript have not been published elsewhere, nor are they being considered by another publisher. The datasets created and/or analyzed during the current study are available upon reasonable request from the corresponding author.

References

  • Ahmad T, Harris N, Bickle M et al (2000) Isotopic constraints on the structural relationships between the lesser Himalayan series and the high Himalayan crystalline series, Garhwal Himalaya. GSA Bull 112:467–477

    Article  CAS  Google Scholar 

  • Anand R, Balakrishnan S (2010) Pb, Sr and nd isotope systematics of metavolcanic rocks of the Hutti greenstone belt, Eastern Dharwar craton: constraints on age, duration of volcanism and evolution of mantle sources during late Archean. J Asian Earth Sci 39:1–11

    Article  Google Scholar 

  • Argles TW, Prince CI, Foster GL, Vance D (1999) New garnets for old? Cautionary tales from young mountain belts. Earth Planet Sci Lett 172:301–309

    Article  CAS  Google Scholar 

  • Avigad D, Abbo A, Gerdes A (2016) Origin of the Eastern Mediterranean: Neotethys rifting along a cryptic cadomian suture with Afro-Arabia. Geol Soc Am Bull 128:1286–1296

    Article  CAS  Google Scholar 

  • Bhargava ON, Srikantia SV (2014) Geology and age of metamorphism of the Jutogh and Vaikrita Thrust sheets, Himachal Himalaya. Himalayan Geol 35:1–15

    Google Scholar 

  • Bhargava ON, Thoni M, Miller C (2016) Isotopic evidence of early palaeozoic metamorphism in the lesser Himalaya (Jutogh Group), Himachal Pradesh, India: its implication. Himalayan Geol 37:73–84

    Google Scholar 

  • Bhat MI, Le Fort P (1992) Sm-Nd age and petrogenesis of Rampur metavolcanic rocks, NW Himalayas: late archaean relics in the himalayan belt. Precambrian Res 56:191–210

    Article  CAS  Google Scholar 

  • Brasilino RG, Sial AN, Ferreira VP, Pimentel MM (2011) Bulk rock and mineral chemistries and ascent rates of high-K calc-alkalic epidote-bearing magmas, Northeastern Brazil. Lithos 127:441–454

    Article  CAS  Google Scholar 

  • Brookfield ME (1993) The himalayan passive margin from precambrian to cretaceous times. Sed Geol 84:1–35

    Article  Google Scholar 

  • Brown M (2007) Metamorphic conditions in orogenic belts: a record of secular change. Int Geol Rev. https://doi.org/10.2747/0020-6814.49.3.193

    Article  Google Scholar 

  • Bucher K, Grapes R (2011) Petrogenesis of metamorphic rocks, 8th edn. Springer-Verlag Berlin Heidelberg GmbH, Berlin

    Book  Google Scholar 

  • Caddick MJ, Bickle M, Harris N, Parrish R (2006) Contrasting depth-temperature-time histories of the high and lesser Himalaya of NW India. J Asian Earth Sci 26:129

    Google Scholar 

  • Caddick MJ, Bickle MJ, Harris NBW et al (2007) Burial and exhumation history of a lesser himalayan schist: recording the formation of an inverted metamorphic sequence in NW India. Earth Planet Sci Lett 264:375–390

    Article  CAS  Google Scholar 

  • Caddick MJ, Konopásek J, Thompson AB (2010) Preservation of garnet growth zoning and the duration of prograde metamorphism. J Petrol 51:2327–2347

    Article  CAS  Google Scholar 

  • Catlos EJ, Harrison TM, Kohn MJ et al (2001) Geochronologic and thermobarometric constraints on the evolution of the Main Central Thrust, central Nepal Himalaya. J Geophys Res Solid Earth 106:16177–16204

    Article  CAS  Google Scholar 

  • Catlos EJ, Harrison TM, Manning CE et al (2002) Records of the evolution of the himalayan orogen from in situ Th–Pb ion microprobe dating of monazite: Eastern Nepal and western Garhwal. J Asian Earth Sci 20:459–479

    Article  Google Scholar 

  • Cattin R, Martelet G, Henry P et al (2021) Seismic imaging of the Crust beneath Arunachal Himalaya. J Geophys Res: Solid Earth. https://doi.org/10.1144/SP483-2019-20

    Article  Google Scholar 

  • Cawood PA, Buchan C (2007) Linking accretionary orogenesis with supercontinent assembly. Earth Sci Rev 85:217–256

    Article  Google Scholar 

  • Cawood PA, Johnson MRW, Nemchin AA (2007) Early palaeozoic orogenesis along the Indian margin of Gondwana: tectonic response to Gondwana assembly. Earth Planet Sci Lett 255:70–84

    Article  CAS  Google Scholar 

  • Chakrabarti BK (2016) Lithotectonic subdivisions of the Himalaya. In: Chakrabarti BK (ed) Geology of the Himalayan Belt. Elsevier, pp 1–9

    Google Scholar 

  • Chambers JA, Argles TW, Horstwood MSA et al (2008) Tectonic implications of Palaeoproterozoic anatexis and late miocene metamorphism in the lesser himalayan sequence, Sutlej Valley, NW India. J Geol Soc 165:725–737

    Article  CAS  Google Scholar 

  • Chappell B, White A (2001) Two contrasting granite types: 25 years later. Aust J Earth Sci 48:489–499

    Article  CAS  Google Scholar 

  • Collins AS, Pisarevsky SA (2005) Amalgamating eastern Gondwana: the evolution of the Circum-Indian Orogens. Earth Sci Rev 71:229–270

    Article  Google Scholar 

  • Connolly JAD (2009) The geodynamic equation of state: what and how. Geochem Geophys Geosyst. https://doi.org/10.1029/2009GC002540.:2009GC002540

    Article  Google Scholar 

  • Dalziel IWD (1997) Neoproterozoic-paleozoic geography and tectonics: review, hypothesis, environmental speculation. Bull Geol Soc Am. https://doi.org/10.1130/0016-7606(1997)109%3c0016:ONPGAT%3e2.3.CO;2

    Article  Google Scholar 

  • DeCelles PG, Gehrels GE, Quade J et al (2000) Tectonic implications of U-Pb zircon ages of the himalayan orogenic belt in Nepal. Science 288:497–499

    Article  CAS  Google Scholar 

  • Ganguly J, Dasgupta S, Cheng W, Neogi S (2000) Exhumation history of a section of the Sikkim Himalayas, India: records in the metamorphic mineral equilibria and compositional zoning of garnet. Earth Planet Sci Lett 183:471–486

    Article  CAS  Google Scholar 

  • Gansser A (1964) Geology of the Himalayas. Wiley InterScience, New York, p 289

    Google Scholar 

  • Gansser A (1977) The great suture zone between himalaya and tibet: a preliminary account. Himalaya-sciences de la terra Colloqes International, 7–10 December 1976. Editions du Centre National de la Researche Scienltifique, Paris 268:181–192

    Google Scholar 

  • Gao LE, Zeng L, Hu G et al (2019) Early paleozoic magmatism along the northern margin of East Gondwana. Lithos 334–335:25–41

    Article  Google Scholar 

  • Garzanti E, Casnedi R, Jadoul F (1986) Sedimentary evidence of a Cambro-Ordovician orogenic event in the northwestern Himalaya. Sediment Geol 48:237–265

    Article  CAS  Google Scholar 

  • Girard M, Bussy F (1999) Late Pan-African magmatism in the Himalaya: new geochronological and geochemical data from the Ordovician Tso Morari metagranites. Ladakh, NW India. https://doi.org/10.5169/SEALS-60215

    Article  Google Scholar 

  • Goldstein SL, O’Nions RK, Hamilton PJ (1984) A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems. Earth Planet Sci Lett 70:221–236

    Article  CAS  Google Scholar 

  • Goscombe B, Gray D, Foster D (2018) Metamorphic response to collision in the Central Himalayan Orogen. Gondwana Res 57:191–265

    Article  Google Scholar 

  • Gray D, Foster D, Meert J et al (2008) A Damara orogen perspective on the assembly of Southwestern Gondwana. Geol Soc London Spec Publ 294:257–278

    Article  Google Scholar 

  • Gursu S, Goncuoglu MC (2005) Early Cambrian back-arc volcanism in the western Taurides, Turkey: implications for rifting along the northern Gondwanan margin. Geol Mag 142:617–631

    Article  Google Scholar 

  • Hifzurrahman, Nasipuri P, Yi K et al (2021) An age-integrated geochemical and computational phase-equilibria study from the Wangtu Gneissic Complex, N-W Himalaya, and its paleogeographic implications in Columbia assembly. Mineral Petrol 115:365–390

    Article  Google Scholar 

  • Holland TJB, Powell R (2011) An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J Metamorph Geol 29:333–383

    Article  CAS  Google Scholar 

  • Hu X-M, Garzanti E, An W, Hu X-F (2015) Provenance and drainage system of the early cretaceous volcanic detritus in the Himalaya as constrained by detrital zircon geochronology. J Palaeogeography 4:85–98

    Article  Google Scholar 

  • Islam R, Upadhyay R, Ahmad T et al (1999) Pan-african Magmatism, and Sedimentation in the NW Himalaya. Gondwana Res 2:263–270

    Article  CAS  Google Scholar 

  • Jain A, Banerjee D (2020) The Indian Subcontinent: Its Tectonics. Proceedings of the Indian National Science Academy. https://doi.org/10.16943/ptinsa/2020/49834

    Article  Google Scholar 

  • Jain AK, Singh S (2008) Tectonics of the southern Asian plate margin along the Karakoram Shear Zone: constraints from field observations and U–Pb SHRIMP ages. Tectonophysics 451:186–205

    Article  CAS  Google Scholar 

  • Joshi KB, Ray S, Ahmad T et al (2021) Geochemistry of meta-sediments from Neoproterozoic Shimla and Chail groups of Outer Lesser Himalaya: implications for provenance, tectonic setting, and paleo-weathering conditions. Geol J. https://doi.org/10.1002/gj.4183

    Article  Google Scholar 

  • Khanal GP, Wang JM, Wu FY et al (2020) In-sequence buoyancy extrusion of the Himalayan Metamorphic Core, central Nepal: constraints from monazite petrochronology and thermobarometry. J Asian Earth Sci 199:104406

    Article  Google Scholar 

  • Kingson O, Bhutani R, Dash JK et al (2017) Resolving the conundrum in origin of the Manipur Ophiolite Complex, Indo-Myanmar range_ constraints from Nd isotopic ratios and elemental concentrations in serpentinized peridotite. Chem Geol 460:117–129

    Article  CAS  Google Scholar 

  • Kohn MJ (2014) Himalayan metamorphism and its tectonic implications. Annu Rev Earth Planet Sci 42:381–419

    Article  CAS  Google Scholar 

  • Kohn MJ, Paul SK, Corrie SL (2010) The lower lesser himalayan sequence: a paleoproterozoic arc on the northern margin of the Indian plate. Bull Geol Soc Am 122:323–335

    Article  CAS  Google Scholar 

  • Kröner A, Stern RJ (2004) Africa: Pan-African Orogeny. Encycl Geol. https://doi.org/10.1016/B0-12-369396-9/00431-7

    Article  Google Scholar 

  • Kusky T, Li J, Santosh M (2007) The Paleoproterozoic North Hebei Orogen: North China Craton’s collisional suture with the Columbia supercontinent. Gondwana Res 12:4–28

    Article  CAS  Google Scholar 

  • Kusky TM, Abdelsalam M, Tucker RD, Stern RJ (2003) Evolution of the East African and related orogens, and the assembly of Gondwana. Precambrian Res 123:81–85

    Article  CAS  Google Scholar 

  • Larson KP, Ambrose TK, Webb AG et al (2015) Reconciling Himalayan midcrustal discontinuities: the Main Central thrust system. Earth Planet Sci Lett 429:139–146

    Article  CAS  Google Scholar 

  • Larson KP, Kellett DA, Cottle JM et al (2016) Anatexis, cooling, and kinematics during orogenesis: miocene development of the himalayan metamorphic core, east-central Nepal. Geosphere 12:1575

    Article  Google Scholar 

  • Le Fort P (1975) Himalayas, the collided range: Present knowledge of the continental arc. Am J Sci 275(A):144

    Google Scholar 

  • Le Fort P (1988) Granites in the tectonic evolution of the Himalaya, Karakoram and southern Tibet. Philosophical Trans - Royal Soc Lond Ser A A 326:281–299

    Article  Google Scholar 

  • Le Fort P (1995) Evolution of the Himalaya. In: Yin A and H MT (ed) The Tectonic Evolution of Asia. Cambridge University Press, pp 95–109

  • Le Fort P, Debon F, Sonet J (1983) The Lower Paleozoic Lesser Himalayan granitic belt: emphasis on the Simchar pluton of Central Nepal. In: Granites of Himalaya, Karakoram and Hindukush. pp 235–255

  • Li J, Niu Y, Chen S et al (2017) Petrogenesis of granitoids in the eastern section of the Central Qilian Block: evidence from geochemistry and zircon U-Pb geochronology. Mineral Petrol 111:23–41

    Article  CAS  Google Scholar 

  • Li S, Zhao S, Liu X et al (2018) Closure of the Proto-Tethys Ocean and early paleozoic amalgamation of microcontinental blocks in East Asia. Earth Sci Rev 186:37–75

    Article  CAS  Google Scholar 

  • Linnemann U, Gerdes A, Hofmann M, Marko L (2014) The Cadomian Orogen: Neoproterozoic to Early Cambrian crustal growth and orogenic zoning along the periphery of the west African Craton—constraints from U–Pb zircon ages and hf isotopes (Schwarzburg Antiform, Germany). Precambrian Res 244:236–278

    Article  CAS  Google Scholar 

  • Martin AJ, Gehrels GE, DeCelles PG (2007) The tectonic significance of (U,th)/Pb ages of monazite inclusions in garnet from the Himalaya of central Nepal. Chem Geol 244:1–24

    Article  CAS  Google Scholar 

  • Marquer D, Chawla HS, Challandes N (2000) Pre-alpine high-grade metamorphism in High Himalaya crystalline sequences: Evidence from Lower Palaeozoic Kinnaur Kailas granite and surrounding rocks in the Sutlej Valley (Himachal Pradesch, India). Eclogae Geol Helv 93:207–220

    CAS  Google Scholar 

  • Matthieu G, François B (1999) Late pan-african magmatism in the Himalaya: new geochronological and geochemical data from the Ordovician Tso Morari metagranites (Ladakh, NW India). Swiss Bull Mineral Petrol 79:399–418

    Google Scholar 

  • Meert JG (2003) A synopsis of events related to the assembly of eastern Gondwana. Tectonophysics 362:1–40

    Article  Google Scholar 

  • Meert JG, Van Der Voo R (1997) The assembly of Gondwana 800 – 550 ma. J Geodyn 23:223–235

    Article  Google Scholar 

  • Moghadam HS, Li QL, Griffin WL et al (2021) Prolonged magmatism and growth of the Iran-Anatolia Cadomian continental arc segment in Northern Gondwana. Lithos 384–385:105940

    Article  Google Scholar 

  • Moghadam HS, Li X, Stern RJ et al (2016) Age and nature of 560–520 Ma calc-alkaline granitoids of Biarjmand, northeast Iran: insights into cadomian arc magmatism in northern Gondwana. Int Geol Rev 58:1492–1509

    Article  Google Scholar 

  • Montel JM, Foret S, Veschambre M et al (1996) Electron microprobe dating of monazite. Chem Geol 131:37–53

    Article  CAS  Google Scholar 

  • Myrow PM, Thompson KR, Hughes NC et al (2006) Cambrian stratigraphy and depositional history of the northern Indian Himalaya, Spiti Valley, north-central India. Bull Geol Soc Am 118:491–510

    Article  Google Scholar 

  • Nance RD, Murphy JB, Santosh M (2014) The supercontinent cycle: a retrospective essay. Gondwana Res. https://doi.org/10.1016/j.gr.2012.12.026

    Article  Google Scholar 

  • Nance RD, Murphy JB, Strachan RA et al (2008) Neoproterozoic-early palaeozoic tectonostratigraphy and palaeogeography of the peri-gondwanan terranes: amazonian v. west African connections. SP 297:345–383

    Article  Google Scholar 

  • Nasipuri P, Corfu F, Bhattacharya A (2018) Eastern Ghats Province (India)-Rayner Complex (Antarctica) accretion: timing the event. Lithosphere 10:523–529

    Article  Google Scholar 

  • Newton RC, Charlu TV, Kleppa OJ (1980) Thermochemistry of the high structural state plagioclases. Geochim Cosmochim Acta 44:933–941

    Article  CAS  Google Scholar 

  • Okay AI (2008) Geology of Turkey: a synopsis. Anschnitt 21:19–42

    Google Scholar 

  • Palin RM, Sayed AB, White RW, Mertz-Kraus R (2018) Origin, age, and significance of deep‐seated granulite‐facies migmatites in the Barrow zones of Scotland, Cairn Leuchan, Glen Muick area. J Metamorphic Geol 36:1071–1096

    Article  CAS  Google Scholar 

  • Pandey UK, Sastry DVLN, Pandey BK et al (2012) Geochronological (Rb-Sr and Sm-Nd) studies on intrusive gabbros and dolerite dykes from parts of northern and central Indian cratons: implications for the age of onset of sedimentation in Bijawar and Chattisgarh basins and uranium mineralisation. J Geol Soc India 79:30–40

    Article  CAS  Google Scholar 

  • Pant N, Singh P, Jain A (2020) A re-look at the himalayan metamorphism. Episodes 43:369–380

    Article  Google Scholar 

  • Pant NC, Kundu A, Kumar R et al (2006) Palaeoproterozoic metamorphism in the Jeori-Wangtu Gneissic Complex (JWGC), western Himalayas. J Asian Earth Sci 26:585–604

    Article  Google Scholar 

  • Pathak M, Kumar S (2019) Petrology, geochemistry and zircon u-pb-lu-hf isotopes of paleoproterozoic granite gneiss from Bomdila in the western Arunachal Himalaya, Northeast India. Geol Soc London Spec Publ. https://doi.org/10.1144/SP481-2017-169

    Article  Google Scholar 

  • Patiño Douce AE, Harris N (1998) Experimental constraints on himalayan anatexis. J Petrol 39:689–710

    Article  Google Scholar 

  • Phukon P (2022) Nature of the northern Indian plate margin during the assembly of Supercontinent Columbia: was it a part of a double subduction? Earth Sci Rev 233:104185

    Article  CAS  Google Scholar 

  • Phukon P, Sen K, Srivastava HB et al (2018) U-Pb geochronology and geochemistry from the Kumaun Himalaya, NW India, reveal paleoproterozoic arc magmatism related to formation of the Columbia supercontinent. Bull Geol Soc Am 130:1164–1176

    Article  CAS  Google Scholar 

  • Prabhakar N (2013) Resolving poly-metamorphic Paleoarchean ages by chemical dating of monazites using multi-spectrometer U, th and pb analyses and sub-counting methodology. Chem Geol 347:255–270

    Article  CAS  Google Scholar 

  • Purkayastha SS, Sharma RP, Ilavazhagan G et al (1999) Effect of vitamin C and E in modulating peripheral vascular response to local cold stimulus in man at high altitude. JJP 49:159–167

    Article  CAS  Google Scholar 

  • Richards A, Argles T, Harris N et al (2005) Himalayan architecture constrained by isotopic tracers from clastic sediments. Earth Planet Sci Lett 236:773–796

    Article  CAS  Google Scholar 

  • Robinson DM, DeCelles PG, Copeland P (2006) Tectonic evolution of the himalayan thrust belt in western Nepal: implications for channel flow models. Bull Geol Soc Am 118:865–885

    Article  Google Scholar 

  • Robyr M (2023) Evidence for a pre-himalayan metamorphism in the high Himalayan Crystalline of the Miyar Valley (NW India). Swiss J Geosci 116:17

    Article  Google Scholar 

  • Searle M, Treloar P (2019) An introduction to himalayan tectonics: a modern synthesis. Geol Soc Lond Spec Publ. https://doi.org/10.1144/SP483-2019-20

    Article  Google Scholar 

  • Sen A, Sen K, Srivastava HB et al (2019) Age and geochemistry of the paleoproterozoic bhatwari gneiss of garhwal lesser himalaya, nw India: implications for the pre-himalayan magmatic history of the lesser himalayan basement rocks. Geol Soc Spec Publ 481:319–339

    Article  Google Scholar 

  • Shirey SB, Hanson GN (1986) Mantle heterogeneity and crustal recycling in Archean granite-greenstone belts: evidence from nd isotopes and trace elements in the Rainy Lake Area, Superior Province, Ontario, Canada. Geochim Cosmochim Acta 50:2631–2651

    Article  CAS  Google Scholar 

  • Simpson GDH, Thompson AB, Connolly JAD (2000) Phase relations, singularities and thermobarometry of metamorphic assemblages containing phengite, chlorite, biotite, K-feldspar, quartz and H 2 O. Contrib Miner Petrol 139:555–569

    Article  CAS  Google Scholar 

  • Singh P, Sethy PC, Singh AK et al (2022) Geochemistry and U–Pb zircon geochronology of the Jutogh Thrust sheet, Himachal Pradesh, NW-Himalaya: implications to the petrogenesis and regional tectonic setting. Geol J. https://doi.org/10.1002/gj.4583

    Article  Google Scholar 

  • Singh PK, Verma SK, Moreno JA et al (2019) Geochemistry and Sm–Nd isotope systematics of mafic-ultramafic rocks from the Babina and Mauranipur greenstone belts, Bundelkhand Craton, India: implications for tectonic setting and Paleoarchean mantle evolution. Lithos 330–331:90–107

    Article  Google Scholar 

  • Singh S (2020) Himalayan Magmatism through space and time. Episodes 43:358–368

    Article  Google Scholar 

  • Singh S, Jain AK (1993) Deformation and strain pattern in parts of the Jutogh Nappe along the Sutlej valley in Jeori-Wangtu region, Himachal Pradesh, India. Himalayan Geol 4:41–55

    Google Scholar 

  • Singh S, Jain AK (2003) Himalayan granitoids. J Virtual Explorer 11:1–20

    Article  Google Scholar 

  • Singh S, Jain AK, Barley ME (2009) SHRIMP U-Pb c. 1860 Ma anorogenic magmatic signatures from the NW Himalaya: implications for palaeoproterozoic assembly of the Columbia supercontinent. Geol Soc Spec Publ 323:283–300

    Article  CAS  Google Scholar 

  • Spencer DA (1993) Tectonics of the higher- and tethyan Himalaya, Upper Kaghan Valley, NW Himalaya, Pakistan: implications of an early collisional, high pressure (eclogite facies) metamorphism to the Himalayan belt Dissertation 10194:0–50

  • Srikantia SV, Bhargava ON (1983) Geology of the palaeozoic sequence of the Kashmir Tethys Himalaya in the Lidder Valley. J Geol Soc India 24:363–377

    Google Scholar 

  • Srikantia SV, Bhargava ON (1988) The Jutogh Group of metasediments of the Himachal Himalaya: its lithostratigraphy. Geol Soc India 32(4):279–294

    Google Scholar 

  • Stern RJ (1994) Arc assembly and continental collision in the Neoproterozoic East African Orogen: implications for the consolidation of Gondwanaland. Annu Rev Earth Planet Sci 22:319–351

    Article  Google Scholar 

  • Stöcklin J (1980) Geology of Nepal and its regional frame. J Geol Soc 137:1–34

    Article  Google Scholar 

  • Stüwe K (2007) Geodynamics of the Lithosphere. Springer-Verlag, Berlin Heidelberg Dordrecht: Springer-Verlag. Geol Mag 145:149–150

    Google Scholar 

  • Tanaka T, Togashi S, Kamioka H et al (2000) JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chem Geol 168:279–281

    Article  Google Scholar 

  • Tang L, Rajesh S, Santosh M et al (2018) Metamorphic phase equilibria modelling and zircon U–Pb geochronology of ultrahigh-temperature cordierite granulites from the Madurai Block, India: implications for hot Gondwana crust. Int Geol Rev. https://doi.org/10.1080/00206814.2017.1313711

    Article  Google Scholar 

  • Thöni M, Miller C, Hager C et al (2012) New geochronological constraints on the thermal and exhumation history of the lesser and higher Himalayan Crystalline Units in the Kullu–Kinnaur area of Himachal Pradesh (India). J Asian Earth Sci 52:98–116

    Article  Google Scholar 

  • Vadlamani R, Pant NC (2020) Precambrian/Early Paleozoic orogenic rocks in the Himalaya - Remnants of the leading edge of the Indian plate. Proc Indian Natn Sci Acad 86:167–173

    Google Scholar 

  • Valdiya KS (1995) Proterozoic sedimentation and pan-african geodynamic development in the Himalaya. Precambrian Res 74:35–55

    Article  Google Scholar 

  • Valdiya KS (2016) The making of India. Geodynamic Evolution, Springer, Germany

    Book  Google Scholar 

  • Vannay JC, Grasemann B, Rahn M et al (2004) Miocene to Holocene exhumation of metamorphic crustal wedges in the NW Himalaya: evidence for tectonic extrusion coupled to fluvial erosion. Tectonics 23:1–24

    Article  Google Scholar 

  • Vannay JC, Sharp ZD, Grasemann B (1999) Himalayan inverted metamorphism constrained by oxygen isotope thermometry. Contrib Miner Petrol 137:90–101

    Article  CAS  Google Scholar 

  • Vermeesch P (2018) IsoplotR: a free and open toolbox for geochronology. Geosci Front 9:1479–1493

    Article  CAS  Google Scholar 

  • Vernon R (2004) A practical guide to rock microstructure. Cambridge University Press. https://doi.org/10.1017/CBO9780511807206

    Article  Google Scholar 

  • Wang GF, Banno S, Takeuchi K (1986) Reactions to define the biotite isograd in the ryoke metamorphic belt, Kii Peninsula, Japan. Contrib Miner Petrol 93:9–17

    Article  CAS  Google Scholar 

  • Wang J, Li Z-X (2003) History of neoproterozoic rift basins in South China: implications for rodinia break-up. Precambrian Res 122:141–158

    Article  CAS  Google Scholar 

  • Wang JM, Rubatto D, Zhang JJ (2015) Timing of partial melting and cooling across the Greater Himalayan crystalline complex (Nyalam, central Himalaya): In-sequence thrusting and its implications. J Petrol 56:1677–1702

    Article  CAS  Google Scholar 

  • Wang JM, Zhang JJ, Liu K et al (2016) Spatial and temporal evolution of tectonometamorphic discontinuities in the central Himalaya: constraints from P-T paths and geochronology. Tectonophysics 679:41–60

    Article  Google Scholar 

  • Wang JM, Zhang JJ, Wang XX (2013) Structural kinematics, metamorphic P–T profiles and zircon geochronology across the Greater H imalayan crystalline complex in south-central T ibet: implication for a revised channel flow. J Metamorphic Geol 31:607–628

    Article  CAS  Google Scholar 

  • White RW, Powell R, Holland TJB et al (2014) New mineral activity-composition relations for thermodynamic calculations in metapelitic systems. J Metamorph Geol 32:261–286

    Article  CAS  Google Scholar 

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187

    Article  CAS  Google Scholar 

  • Yılmaz İ, Şahin SY, Aysal N et al (2021) Geochronology, geochemistry and tectonic setting of the Cadomian (Ediacaran–Cambrian) magmatism in the Istranca (Strandja) Massif: new insights into magmatism along the northern margin of Gondwana in NW Turkey. Int Geol Rev 0:1–22

    Google Scholar 

  • Yilmaz Şahin S, Aysal N, Güngör Y et al (2014) Geochemistry and U–Pb zircon geochronology of metagranites in Istranca (Strandja) Zone, NW Pontides, Turkey: implications for the geodynamic evolution of Cadomian orogeny. Gondwana Res 26:755–771

    Article  Google Scholar 

  • Zhao G, Wang Y, Huang B et al (2018) Geological reconstructions of the east Asian blocks: from the breakup of rodinia to the assembly of Pangea. Earth Sci Rev 186:262–286

    Article  Google Scholar 

Download references

Acknowledgements

The research work is part of Hifzurrahman’s Ph.D. thesis. The authors extend sincere gratitude to the anonymous reviewers for their meticulous reviews and valuable suggestions. Additionally, the authors express gratitude to Editor-in-Chief, Lutz Nasdala and Associate Editor Chao Wang for their insightful suggestions and exceptional editorial handling. Pritam Nasipuri acknowledges financial support from the Ministry of Earth Sciences, India Project MoES/P. O/(GEO)/101(3)/2017 for supporting fieldwork, petrography, and geochemical analysis. Additionally, Hifzurrahman expresses gratitude to Kalachand Sain, and Koushik Sen for their permission to complete the revision work of the manuscript.

Funding

The Ministry of Earth Sciences, India [Project MoES/P. O/(GEO)/101(3)/2017] has sponsored and supported this research work, and some funding has also been provided by the Director, Indian Institute of Science Education and Research (IISER) Bhopal, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pritam Nasipuri.

Additional information

Editorial handling: C. Wang

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1 (PDF 976 KB)

Supplementary Material 2 (PDF 4140 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hifzurrahman, Nasipuri, P., Ganaie, A.M. et al. Cambro-Ordovician metamorphism from Lesser Himachal Himalaya and its implication for Gondwana assembly. Miner Petrol (2024). https://doi.org/10.1007/s00710-024-00855-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00710-024-00855-4

Keywords

Navigation