Skip to main content
Log in

Estimation of Li and OH contents in (Li,Al)-bearing tourmalines from Raman spectra

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Six Al- and Li-bearing tourmaline crystals from pegmatites were structurally and chemically characterized. These samples can be assigned to elbaite, fluor-elbaite and rossmanite. Quantitative analyses of light elements such as Li, B and H are not always easily accessible. Therefore a method for the calculation of Li and OH would be of a general interest for the Geosciences. In the present work we test whether relatively accurate Li and OH estimations are possible based on the deconvolution of the O–H stretching vibration modes in a Raman spectrum on common (Al, Li)-rich tourmalines. We use the short-range arrangement model in our band interpretation as this model, in contrast to other models, provides the ability to evaluate an additional parameter by analyzing the OH stretching modes that can be used in the formula calculation process, which ultimately leads to the estimation of Li and OH with high accuracy. We also compare microprobe and Raman spectroscopy results, which we combine, with optimized data derived from microprobe and single-crystal structure refinement by using the same crystals. Based on our investigations, where the Raman spectra were recorded on non-oriented crystal sections, we conclude that we produce more accurate estimations, when the effects of the section orientation are considered. Therefore, we also propose a new method to correct the influence of the orientation of the crystal section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Berryman EJ, Wunder B, Ertl A, Koch-Müller M, Rhede D, Scheidl K, Giester G, Heinrich W (2016) Influence of the X-site compositionon tourmaline’s crystal structure: Investigation of synthetic K-dravite, dravite oxy-uvite, and magnesio-foitite using SREF and Raman spectroscopy. Phys Chem Miner 43:83–102

    Article  Google Scholar 

  • Bosi F (2013) Bond-valence constraints around the O1 site of tourmaline. Mineral Mag 77:343–351

    Article  Google Scholar 

  • Bosi F (2018) Tourmaline Crystal Chemistry. Am Mineral 103(2):298–306

    Article  Google Scholar 

  • Bosi F, Skogby H, Balić-Žunić T (2016) Thermal stability of extended clusters in dravite: a combined EMP SREF and FTIR study. Phys Chem Miner 43:395–407

    Article  Google Scholar 

  • Bronzova Y, Babushkina M, Frank-Kamenetskaya O, Vereshchagin O, Rozhdestvenskaya I, Zolotarev A (2019) Short-range order in Li-Al tourmalines: IR spectroscopy, X-ray single crystal diffraction analysis and bond valence theory approach. Phys Chem Miner 46:815–825

    Article  Google Scholar 

  • Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) OLEX2: a complete structure solution refinement and analysis program. J Appl Crystallogr 42:339–341

    Article  Google Scholar 

  • Dyar MD, Taylor ME, Lutz TM, Francis CA, Guidotti CV, Wise M (1998) Inclusive chemical characterization of tourmaline: Mössbauer study of Fe valence and site occupancy. Am Mineral 83:848–864

    Article  Google Scholar 

  • Ertl A, Hughes JM, Prowatke S, Rossman GR, London D, Fritz EA (2003) Mn-rich tourmaline from Austria: structure chemistry optical spectra and relations to synthetic solid solutions. Am Mineral 88:1369–1377

    Article  Google Scholar 

  • Ertl A, Kolitsch U, Meyer H-P, Ludwig T, Lengauer CL, Nasdala L, Tillmanns E (2009) Substitution mechanism in tourmalines in the “fluor-elbaite“ – rossmanite series from Wolkenburg Saxony Germany. Neu Jb Mineral Abh 186:51–61

    Article  Google Scholar 

  • Ertl A, Rossman GR, Hughes JM, London D, Wang Y, O’Leary JA, Dear MD, Prowatke S, Ludwig T, Tillmanns E (2010) Tourmaline of the elbaite-schorl series from the Himalaya Mine Mesa Grande California: A detailed investigation. Am Mineral 95:24–40

    Article  Google Scholar 

  • Ertl A, Schuster R, Hughes JM, Ludwig T, Meyer H-P, Finger F, Dyar MD, Ruschel K, Rossman GR, Klötzli U, Brandstätter F, Cl L, Tillmanns E (2012) Li-bearing tourmalines in Variscan granitic pegmatites from the Moldanubian nappes Lower Austria. Eur J Mineral 24:695–715

    Article  Google Scholar 

  • Ertl A, Giester G, Schüssler U, Brätz H, Okrusch M, Tillmanns E, Bank H (2013) Cu- and Mn-bearing tourmalines from Brazil and Mozambique: crystal structures chemistry and correlations. Mineral Petrol 107:265–279

    Article  Google Scholar 

  • Ertl A, Hughes JM, Prowatke S, Ludwig T, Lengauer CL, Meyer H-P, Giester G, Kolitsch U, Prayer A (2022) Alumino-oxy-rossmanite from pegmatites in Variscan metamorphic rocks from Eibenstein an der Thaya Lower Austria Austria: a new tourmaline that represents the most Al-rich end-member composition. Am Mineral 107(2):157–166

    Article  Google Scholar 

  • Fantini C, Tavares MC, Krambrock K, Moreira RL, Righi A (2014) Raman and infrared study of hydroxyl sites in natural uvite fluor-uvite magnesio-foitite dravite and elbaite tourmalines. Phys Chem Miner 41:247–254

    Article  Google Scholar 

  • Gatta GD, Danisi RM, Adamo I, Meven M, Diella V (2012) A single-crystal neutron and X-ray diffraction study of elbaite. Phys Chem Miner 39:577–588

    Article  Google Scholar 

  • Gonzalez-Carreño T, Fernandez M, Sanz J (1988) Infrared and electron microprobe analysis of tourmalines. Phys Chem Miner 15:452–460

    Article  Google Scholar 

  • Hawthorne FC (1996) Structural mechanisms for light-element variations in tourmaline. Can Mineral 34:123–132

    Google Scholar 

  • Hawthorne FC (2016) Short-range atomic arrangements in minerals I: The minerals of the amphibole, tourmaline and pyroxene supergroups. Eur J Mineral 28:513–536

    Article  Google Scholar 

  • Henry DJ, Novák M, Hawthorne FC, Ertl A, Dutrow BL, Uher P, Pezzotta F (2011) Nomenclature of the tourmaline-supergroup minerals. Am Mineral 96:895–913

    Article  Google Scholar 

  • Hoang LH, Hien NTM, Chen XB, Minh NV, Yang I-S (2011) Raman spectroscopic study of various types of tourmalines. J Raman Spectrosc 42:1443–1446

    Article  Google Scholar 

  • Kutzschbach M, Wunder B, Rhede D, Koch-Müller M, Ertl A, Giester G, Heinrich W, Franz G (2016) Tetrahedral boron in natural and synthetic HP/UPH tourmaline: Evidence from Raman spectroscopy EMPA and single-crystal XRD. Am Mineral 101:93–104

    Article  Google Scholar 

  • Kutzschbach M, Wunder B, Wannhoff I, Wilke FDH, Couffignal F, Rocholl A (2021) Raman spectroscopic quantification of tetrahedral boron in synthetic aluminum-rich tourmaline. Am Mineral 106:872–882

    Article  Google Scholar 

  • Landau LD, Lifschitz EM (1976) Mechanics, 3rd edn. Pergamon Press, Oxford

    Google Scholar 

  • Levenberg K (1944) A method for the solution of certain non-linear problems in least squares. Q Appl Math 2:164–168

    Article  Google Scholar 

  • Marquardt D (1963) An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math 11:431–441

    Article  Google Scholar 

  • Mercurio M, Rossi M, Izzo F, Cappelletti P, Germinario C, Grifa C, Petrelli M, Vergara A, Langella A (2018) The characterization of natural gemstones using non-invasive FT-IR spectroscopy: New data on tourmalines. Talanta 178:147–159

    Article  Google Scholar 

  • Nishio-Hamane D, Minakawa T, Yamaura J, Oyama T, Ohnishi M, Shimobayashi N (2014) Adachiite a Si–poor member of the tourmaline supergroup from the Kiura mine Oita Prefecture Japan. J Mineral Petrol Sci 109:74–78

    Article  Google Scholar 

  • Pesquera A, Gil-Crespo PP, Torres-Ruiz F, Torres-Ruiz J, Roda-Robles E (2016) A multiple regression method for estimating Li in tourmaline from electron microprobe analyses. Mineral Mag 80:1129–1133

    Article  Google Scholar 

  • Pieczka A, Gołębiowska B, Jeleń P, Włodek A, Szełęg E, Szuszkiewicz A (2018) Towards Zn-dominant tourmaline: a case of Zn-rich fluor-elbaite and elbaite from the Julianna system at Piława Górna Lower Silesia SW Poland. Minerals 8:126

    Article  Google Scholar 

  • Pieczka A, Ertl A, Gołębiowska B, Jeleń P, Kotowski J, Nejbert K, Stachowicz M, Giester G (2020) Crystal structure and Raman spectroscopic studies of OH stretching vibrations in Zn-rich fluor-elbaite. Am Mineral 105:1622–1630

    Article  Google Scholar 

  • Pouchou J-L, Pichoir F (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP.” In: Heinrich KFJ, Newbury DE (eds) Electron Probe Quantitation. Plenum Press, New York, pp 31–75

    Chapter  Google Scholar 

  • Roda-Robles E, Simmons W, Pesquera A, Gil-Crespo PP, Nizamoff J, Torres-Ruiz J (2015) Tourmaline as a petrogenetic monitor of the origin and evolution of the Berry-Haveypegmatite (Maine USA). Am Mineral 100:95–109

    Article  Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767

    Article  Google Scholar 

  • Sheldrick GM (2015a) SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallogr A 71:3–8

    Article  Google Scholar 

  • Sheldrick GM (2015b) Crystal structure refinement with SHELXL. Acta Crystallogr C 71:3–8

    Article  Google Scholar 

  • Skogby H, Bosi F, Lazor P (2012) Short-range order in tourmaline: a vibrational spectroscopic approach to elbaite. Phys Chem Miner 39:811–816

    Article  Google Scholar 

  • Sokolov PB, Gorskaya MG, Gordienko VV, Petrova MG, Kretser YL, Frank-Kamenetskii VA (1986) Olenite Na1-xAl3Al6B3Si6O27(O, OH)4 – a new high-alumina mineral of the tourmaline group. Zap Vses Mineral Obshch 115:119–123 (in Russian)

    Google Scholar 

  • Szuszkiewicz A, Szełęg E, Pieczka A, Ilnicki S, Nejbert K, Turniak K, Banach M, Łodziński M, Różniak R, Michałowski P (2013) The Julianna pegmatite vein system at the Piława Górna mine Góry Sowie Block SW Poland – preliminary data on geology and descriptive mineralogy. Geol Q 57:467–484

    Google Scholar 

  • Watenphul A, Burgdorf M, Schlüter J, Horn I, Malcherek T, Mihailova B (2016) Exploring the potential of Raman spectroscopy for crystallochemical analyses of complex hydrous silicates: II Tourmalines. Am Mineral 101:970–985

    Article  Google Scholar 

  • Wojdyr M (2010) Fityk a general-purpose peak fitting program. J Appl Crystallogr 43:1126–1128

    Article  Google Scholar 

  • Zhao C, Liao L, Xia Z, Sun X (2012) Temperature-dependent Raman and infrared spectroscopy study on iron-magnesium tourmalines with different Fe content. Vib Spectrosc 62:28–34

    Article  Google Scholar 

Download references

Acknowledgements

We thank Martin Kutzschbach and three anonymous experts for their constructive reviews, and Boriana Mihailova for helpful comments on an earlier version of the manuscript. This study was supported by the National Science Centre (Poland) grant 2015/19/B/ST10/01809 and AGH University of Science and Technology grant 16.16.140.315, both to A.P., and in part by the Austrian Science Fund (FWF) project P 31049-N29 to A.E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Pieczka.

Additional information

Editorial handling: L. Nasdala

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (CIF 6035 KB)

Supplementary file2 (PDF 958 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pieczka, A., Gołębiowska, B., Stachowicz, M. et al. Estimation of Li and OH contents in (Li,Al)-bearing tourmalines from Raman spectra. Miner Petrol 116, 229–249 (2022). https://doi.org/10.1007/s00710-022-00774-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-022-00774-2

Keywords

Navigation