Skip to main content

Advertisement

Log in

Evolution of spinel-bearing ultrahigh-temperature granulite in the Jining complex, North China Craton: constrained by phase equilibria and Monte Carlo methods

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The peak temperature and timescale of ultrahigh-temperature (UHT) metamorphism are significant for understanding its thermal budget and geodynamic evolution. The spinel-bearing (sapphirine-absent) UHT granulite at the Xuwujia area in the Jining complex, North China Craton was revealed to have undergone a metamorphic evolution that involves the pre-Tmax (maximum temperature) heating decompression to the Tmax stage with an extreme temperature of ~1125 °C, the post-Tmax cooling to the fluid-absent solidus (~860 °C) at 0.8–0.9 GPa, and sub-solidus decompression. The Tmax condition was recorded by the inferred feldspar-absent peak assemblage of spinel ± garnet. The post-Tmax cooling evolution was indicated by the sequential appearances of plagioclase, K-feldspar, sillimanite and biotite, as well as the core-to-rim ascending grossular component in garnet. Moreover, some texturally zoned spinel has exsolved lamellae of magnetite in the core and shows rim-ward increase of Mg and Al, which suggests a temperature decrease from >1100 °C in local domains isolated from quartz. Spinel with exsolved magnetite lamellae or low Al/(Al + Fe3+) is therefore proposed as an indicator for UHT conditions in metapelites. Probability simulation on the collected zircon ages yields a timescale of ~40 Myr (95% confidence; during 1.90–1.94 Ga) for the supra-solidus cooling stage of the UHT metamorphism in the Jining complex. This extreme UHT metamorphism has reached the rock’s dry solidus (~1125 °C) and undergone slow cooling, which is interpreted to result from a post-orogenic plume activity with sufficient advective heating from hyperthermal mafic intrusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ague JJ, Eckert JO (2012) Precipitation of rutile and ilmenite needles in garnet: implications for extreme metamorphic conditions in the Acadian Orogen, USA. Am Mineral 97:840–855

    Article  Google Scholar 

  • Baba S (2003) Two stages of sapphirine formation during prograde and retrograde metamorphism in the Paleoproterozoic Lewisian complex in South Harris, NW Scotland. J Petrol 44:329–354

    Article  Google Scholar 

  • Brown M (2007) Metamorphic conditions in orogenic belts: a record of secular change. Int Geol Rev 49:193–234

    Article  Google Scholar 

  • Clark C, Taylor RJM, Kylander-Clark ARC, Hacker BR (2018) Prolonged (>100 Ma) ultrahigh temperature metamorphism in the Napier complex, East Antarctica: a petrochronological investigation of Earth’s hottest crust. J Metamorph Geol 36:1117–1139

  • Clarke GL, Powell R, Guiraud M (1989) Low-pressure granulite facies metapelitic assemblages and corona textures from MacRobertson land, East Antarctica: the importance of Fe2O3 and TiO2 in accounting for spinel-bearing assemblages. J Metamorph Geol 7:323–335

    Article  Google Scholar 

  • Das E, Karmakar S, Dey A, Karmakar S, Sengupta P (2017) Reaction textures, pressure-temperature paths and chemical dates of monazite from a new suite of sapphirine-spinel granulites from parts of the eastern Ghats Province, India: insights into the final amalgamation of India and East Antarctica during the formation of Rodinia. In: Pant NC, Dasgupta S (eds) Crustal evolution of India and Antarctica: the supercontinent connection, vol 457. Geol Soc Lond Spec Publ, pp 141–170

  • Elkins LT, Grove TL (1990) Ternary feldspar experiments and thermodynamic models. Am Mineral 75:544–559

    Google Scholar 

  • Farquhar J, Chacko T, Ellis DJ (1996) Preservation of oxygen isotope compositions in granulites from northwestern Canada and Enderby Land, Antarctica: implications for high-temperature isotopic thermometry. Contrib Mineral Petrol 125:213–224

    Article  Google Scholar 

  • Faryad SW, Cuthbert SJ (2020) High-temperature overprint in (U)HPM rocks exhumed from subduction zones: a product of isothermal decompression or a consequence of slab break-off (slab rollback)? Earth-Sci Rev 202:103108

    Article  Google Scholar 

  • Guiraud M, Kienast J, Rahmani A (1996) Petrological study of high-temperature granulites from in Ouzzal, Algeria: some implications on the phase relationships in the FMASTOCr systems. Eur J Mineral 8:1375–1390

  • Guo JH, Shi X, Bian A, Xu R, Zhai MG, Li Y (1999) Pb isotopic composition of feldspar and U–Pb age of zircon from early Proterozoic granite in Sanggan area, North China Craton: metamorphism, crustal melting and tectono-thermal event. Acta Petrol Sin 15:199–207 (in Chinese with English abstract)

    Google Scholar 

  • Guo JH, Peng P, Chen Y, Jiao SJ, Windley BF (2012) UHT sapphirine granulite metamorphism at 1.93–1.92 Ga caused by gabbronorite intrusions: implications for tectonic evolution of the northern margin of the North China Craton. Precambrian Res 222–223:124–142

    Article  Google Scholar 

  • Hand M, Scrimgeour I, Powell R, Stüwe K, Wilson CJL (2007) Metapelitic granulites from Jetty peninsula, East Antarctica: formation during a single event or by polymetamorphism. J Metamorph Geol 12:557–573

    Article  Google Scholar 

  • Harley SL (2004) Extending our understanding of ultrahigh temperature crustal metamorphism. J Mineral Petrol Sci 99:140–158

    Article  Google Scholar 

  • Harley SL (2008) Refining the P–T records of UHT crustal metamorphism. J Metamorph Geol 26:125–154

    Article  Google Scholar 

  • Harley SL (2016) A matter of time: the importance of the duration of UHT metamorphism. J Mineral Petrol Sci 111:50–72

    Article  Google Scholar 

  • Harley SL, Kelly NM, Moller A (2007) Zircon behaviour and the thermal histories of mountain chains. Elements 3:25–30

    Article  Google Scholar 

  • Hensen BJ (1986) Theoretical phase relations involving cordierite and garnet revisited: the influence of oxygen fugacity on the stability of sapphirine and spinel in the system mg-Fe-Al-Si-O. Contrib Mineral Petrol 92:362–367

    Article  Google Scholar 

  • Holland TJB, Powell R (2011) An improved and extended internally-consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J Metamorph Geol 29:333–383

    Article  Google Scholar 

  • Hollis JA, Harley SL, White RW, Clarke GL (2006) Preservation of evidence for prograde metamorphism in UHT-HP granulites, South Harris, Scotland. J Metamorph Geol 24:263–279

    Article  Google Scholar 

  • Huang GY, Guo JH, Jiao SJ, Palin RM (2019) What drives the continental crust to be extremely hot so quickly. J Geophys Res Solid Earth 124:11218–11231

    Article  Google Scholar 

  • Iwamori H (2000) Thermal effects of ridge subduction and its implications for the origin of granitic batholiths and paired metamorphic belts. Earth Planet Sci Lett 181:131–144

    Article  Google Scholar 

  • Jiao SJ, Guo JH (2011) Application of the two-feldspar geothermometer to ultrahigh-temperature (UHT) rocks in the Khondalite Belt, North China Craton and its implications. Am Mineral 96:250–260

    Article  Google Scholar 

  • Jiao SJ, Guo JH, Evans NJ, Mcdonald BJ, Liu P, Ouyang DJ, Fitzsimons ICW (2020) The timing and duration of high-temperature to ultrahigh-temperature metamorphism constrained by zircon U–Pb–Hf and trace element signatures in the Khondalite Belt, North China Craton. Contrib Mineral Petrol 175:66

    Article  Google Scholar 

  • Johannes W, Holtz F (1996) Petrogenesis and experimental petrology of granitic rocks. In: El Goresy A, von Engelhardt W, Hahn T (eds) Minerals and rocks. Springer Verlag, Berlin, p 271

    Google Scholar 

  • Kelsey DE (2008) On ultrahigh-temperature crustal metamorphism. Gondwana Res 13:1–29

    Article  Google Scholar 

  • Kelsey DE, Hand M (2015) On ultrahigh temperature crustal metamorphism: phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings. Geosci Front 6:311–356

    Article  Google Scholar 

  • Kelsey DE, White RW, Holland TJB, Powell R (2004) Calculated phase equilibria in K2O-FeO-MgO-Al2O3-SiO2-H2O for sapphirine-quartz-bearing mineral assemblages. J Metamorph Geol 22:559–578

    Article  Google Scholar 

  • Kelsey DE, Clark C, Hand M (2008) Thermobarometric modelling of zircon and monazite growth in melt bearing systems: examples using model metapelitic and metapsammitic granulites. J Metamorph Geol 26:199–212

    Article  Google Scholar 

  • Korhonen FJ, Saw AK, Clark C, Brown M, Bhattacharya S (2011) New constraints on UHT metamorphism in the eastern Ghats Province through the application of phase equilibria modelling and in situ geochronology. Gondwana Res 20:764–781

    Article  Google Scholar 

  • Korhonen FJ, Powell R, Stout JH (2012) Stability of sapphirine plus quartz in the oxidized rocks of the Wilson Lake terrane, Labrador: calculated equilibria in NCKFMASHTO. J Metamorph Geol 30:21–36

    Article  Google Scholar 

  • Laurent AT, Bingen B, Duchene S, Whitehouse MJ, Seydoux-Guillaume AM, Bosse V (2018) Decoding a protracted zircon geochronological record in ultrahigh temperature granulite, and persistence of partial melting in the crust, Rogaland, Norway. Contrib Mineral Petrol 173:29

    Article  Google Scholar 

  • Li XW (2019) Paleoproterozoic ultrahigh temperature metamorphism in the Jining region, Khondalite Belt, North China Craton. Doctoral dissertation, Peking University, Beijing

  • Li XW, Wei CJ (2016) Phase equilibria modelling and zircon age dating of pelitic granulites in Zhaojiayao, from the Jining Group of the Khondalite Belt, North China Craton. J Metamorph Geol 34:595–615

    Article  Google Scholar 

  • Li XW, Wei CJ (2018) Ultrahigh-temperature metamorphism in the Tuguiwula area, Khondalite Belt, North China Craton. J Metamorph Geol 36:489–509

    Article  Google Scholar 

  • Li XP, Yang ZY, Zhao GC, Grapes R, Guo JH (2011) Geochronology of khondalite-series rocks of the Jining complex: confirmation of depositional age and tectonometamorphic evolution of the North China Craton. Int Geol Rev 53:1194–1211

    Article  Google Scholar 

  • Li XL, Zhang LF, Wei CJ, Slabunov AI, Bader T (2018) Quartz and orthopyroxene exsolution lamellae in clinopyroxene and the metamorphic P-T path of Belomorian eclogites. J Metamorph Geol 36:11–12

    Article  Google Scholar 

  • Li XW, White RW, Wei CJ (2019) Can we extract ultrahigh-temperature conditions from Fe-rich metapelites? An example from the Khondalite Belt, North China Craton. Lithos 328–329:228–243

    Article  Google Scholar 

  • Liao Y, Wei CJ (2019) Ultrahigh-temperature mafic granulite in the Huai'an complex, North China Craton: evidence from phase equilibria modelling and amphibole thermometers. Gondwana Res 76:62–76

    Article  Google Scholar 

  • Liu SJ, Li JH (2007) Review of ultrahigh-temperature (UHT) metamorphism study: a case from North China Craton. Geosci Front 14:131–137

    Google Scholar 

  • Liu SJ, Xiang B, Li JH, Santosh M (2011) Retrograde metamorphism of ultrahigh-temperature granulites from the Khondalite belt in Inner Mongolia, North China Craton: evidence from aluminous orthopyroxenes. Geo J 46:263–275

    Article  Google Scholar 

  • Liu SJ, Tsunogae T, Li WS, Shimizu H, Santosh M, Wan YS, Li JH (2012) Paleoproterozoic granulites from Heling’er: implications for regional ultrahigh-temperature metamorphism in the North China Craton. Lithos 148:54–70

    Article  Google Scholar 

  • Lobjoie C, Wei L, Trap P, Goncalves P, Li Q, Marquer D, Devoir A (2018) Ultra-high temperature metamorphism recorded in Fe-rich olivine-bearing migmatite from the Khondalite belt, North China Craton. J Metamorph Geol 36:343–368

    Article  Google Scholar 

  • Nichols GT, Berry RF, Green DH (1992) Internally consistent gahnitic spinel–cordierite–garnet equilibria in the FMASHZn system: Geothermobarometry and applications. Contrib Mineral Petrol 111:362–377

    Article  Google Scholar 

  • Peng P, Guo JH, Zhai MG, Bleeker W (2010) Paleoproterozoic gabbronoritic and granitic magmatism in the northern margin of the North China craton: evidence of crust–mantle interaction. Precambrian Res 183:635–659

    Article  Google Scholar 

  • Pouchou JL, Pichoir F (1985) “PAP” (phi-rho-Z) procedure for improved quantitative microanalysis. In: Armstrong JT (ed) Microbeam analysis. San Francisco Press, San Francisco, pp 104–106

    Google Scholar 

  • Powell R, Holland TJB (1988) An internally consistent dataset with uncertainties and correlations: applications to geobarometry, worked examples and a computer program. J Metamorph Geol 6:173–204

    Article  Google Scholar 

  • Proyer A, Habler G, Abart R, Wirth R, Krenn K, Hoinkes G (2013) TiO2 exsolution from garnet by open-system precipitation: evidence from crystallographic and shape preferred orientation of rutile inclusions. Contrib Mineral Petrol 166:211–234

    Article  Google Scholar 

  • Santosh M, Kusky T (2010) Origin of paired high pressure–ultrahigh-temperature orogens: a ridge subduction and slab window model. Terra Nova 22:35–42

    Article  Google Scholar 

  • Santosh M, Wilde SA, Li JH (2007a) Timing of Paleoproterozoic ultrahigh-temperature metamorphism in the North China craton: evidence from SHRIMP U-Pb zircon geochronology. Precambrian Res 159:178–196

    Article  Google Scholar 

  • Santosh M, Tsunogae T, Li JH, Liu SJ (2007b) Discovery of sapphirine-bearing mg–Al granulites in the North China Craton: implications for Paleoproterozoic ultrahigh temperature metamorphism. Gondwana Res 11:263–285

    Article  Google Scholar 

  • Santosh M, Sajeev K, Li JH, Liu SJ, Itaya T (2009) Counterclockwise exhumation of a hot orogen: the Paleoproterozoic ultrahigh-temperature granulites in the North China Craton. Lithos 110:140–152

    Article  Google Scholar 

  • Santosh M, Liu SJ, Tsunogae T, Li JH (2012) Paleoproterozoic ultrahigh-temperature granulites in the North China Craton: implications for tectonic models on extreme crustal metamorphism. Precambrian Res 223:77–106

    Article  Google Scholar 

  • Sengupta P, Karmakar S, Dasgupta S, Fukuoka M (1991) Petrology of spinel granulites from Araku, eastern Ghats, India, and a petrogenetic grid for sapphirine-free rocks in the system FMAS. J Metamorph Geol 9:451–459

    Article  Google Scholar 

  • Sengupta P, Sen J, Dasgupta S, Raith M, Bhui UK, Ehl J (1999) Ultra-high temperature metamorphism of metapelitic granulites from Kondapalle, eastern Ghats belt: implications for the indo-Antarctic correlation. J Petrol 40:1065–1087

    Article  Google Scholar 

  • Shi Q, Dong XJ, Xu ZY, Guan QB, Li PC, Zhang C, Cui FH (2018) Anatectic origin and geological significance of the Paleoproterozoic gneissic garnet granite in the Jining area, northern margin of the North China Craton. Acta Petrol Sin 34:2754–2772 (in Chinese with English abstract)

    Google Scholar 

  • Shimizu H, Tsunogae T, Santosh M, Liu SJ, Li JH (2013) Phase equilibrium modelling of Palaeoproterozoic ultrahigh temperature sapphirine granulite from the Inner Mongolia suture zone, North China Craton: implications for counterclockwise P–T path. Geol J 48:456–466

    Article  Google Scholar 

  • Stevens G, Clemens JD, Droop GTR (1997) Melt production during granulite facies anatexis: experimental data from “primitive” metasedimentary protoliths. Contrib Mineral Petrol 128:352–370

    Article  Google Scholar 

  • Svensen H, Corfu F, Polteau S, Hammer O, Planke S (2012) Rapid magma emplacement in the Karoo large Igneous Province. Earth Planet Sci Lett 325−326:1–9

    Article  Google Scholar 

  • Syracuse EM, Keken PEV, Abers GA (2010) The global range of subduction zone thermal models. Phys Earth Planet Inter 183:73–90

    Article  Google Scholar 

  • Tajcmanová L, Konopásek J, Kosler J (2009) Distribution of zinc and its role in the stabilization of spinel in high-grade felsic rocks of the Moldanubian domain (bohemian massif). Eur J Mineral 21:407–418

    Article  Google Scholar 

  • Taylor-Jones K, Powell R (2010) The stability of sapphirine + quartz: calculated phase equilibria in FeO–MgO–Al2O3–SiO2–TiO2–O. J Metamorph Geol 28:615–633

    Article  Google Scholar 

  • Wang W, Liu X, Hu J, Li Z, Zhao Y, Zhai MG, Liu XC, Clarke G, Zhang SH, Qu H (2014) Late Paleoproterozoic medium-P high grade metamorphism of basement rocks beneath the northern margin of the Ordos Basin, NW China: petrology, phase equilibrium modelling and U-Pb geochronology. Precambrian Res 251:181–196

    Article  Google Scholar 

  • Wang W, Gao S, Liu XC, Zhao Y, Wei CJ, Xiao W, Gong W (2017) Prolonged anatexis of Paleoproterozoic metasedimentary basement: first evidence from the Yinchuan Basin and new constraints on the evolution of the Khondalite Belt, North China Craton. Precambrian Res 302:74–93

    Article  Google Scholar 

  • Wang LJ, Guo JH, Yin CQ, Peng P, Zhang J, Spencer CJ, Qian JH (2018) High-temperature S-type granitoids (charnockites) in the Jining complex, North China Craton: Restite entrainment and hybridization with mafic magma. Lithos 320–321:435–453

    Article  Google Scholar 

  • Wang B, Tian W, Wei CJ, Di YK (2019) Ultrahigh metamorphic temperatures over 1050 °C recorded by Fe-Ti oxides and implications for Paleoproterozoic magma-induced crustal thermal perturbation in Jining area, North China Craton. Lithos 348–349:105180

    Article  Google Scholar 

  • Wang B, Wei CJ, Tian W, Fu B (2020) UHT metamorphism peaking above 1100 °C with slow cooling: insights from pelitic granulites in the Jining complex, North China Craton. J Petrol 61:egaa070

    Article  Google Scholar 

  • Waters DJ (1991) Hercynite–quartz granulites: phase relations, and implications for crustal processes. Eur J Mineral 3:367–386

    Article  Google Scholar 

  • Wheller CJ, Powell R (2014) A new thermodynamic model for sapphirine: calculated phase equilibria in K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. J Metamorph Geol 32:287–299

    Article  Google Scholar 

  • White RW, Powell R, Holland TJB, Johnson TE, Green ECR (2014) New mineral activity–composition relations for thermodynamic calculations in metapelitic systems. J Metamorph Geol 32:261–286

    Article  Google Scholar 

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187

    Article  Google Scholar 

  • Yang QY, Santosh M, Tsunogae T (2014) Ultrahigh-temperature metamorphism under isobaric heating: new evidence from the North China Craton. J Asian Earth Sci 95:2–16

    Article  Google Scholar 

  • Yin CQ, Zhao GC, Guo JH, Sun M, Xia X, Zhou X, Liu C (2011) U-Pb and Hf isotopic study of zircons of the Helanshan complex: constrains on the evolution of the Khondalite Belt in the Western block of the North China Craton. Lithos 122:25–38

    Article  Google Scholar 

  • Zhai MG, Santosh M (2011) The early Precambrian odyssey of the North China Craton: a synoptic overview. Gondwana Res 20:6–25

    Article  Google Scholar 

  • Zhang HT, Li JH, Liu SJ, Li WS, Santosh M, Wang HH (2012) Spinel + quartz-bearing ultrahigh-temperature granulites from Xumayao, Inner Mongolia suture zone, North China Craton: petrology, phase equilibria and counterclockwise P-T path. Geosci Front 3:603–611

    Article  Google Scholar 

  • Zhao GC (2009) Metamorphic evolution of major tectonic units in the basement of the North China Craton: key issues and discussion. Acta Petrol Sin 25:1772–1792 (in Chinese with English abstract)

    Google Scholar 

  • Zhao GC, Sun M, Wilde SA, Li SZ (2005) Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Res 136:177–202

    Article  Google Scholar 

  • Zhao GC, Cawood PA, Li SZ, Wilde SA, Sun M, Zhang J, Yin CQ (2012) Amalgamation of the North China Craton: key issues and discussion. Precambrian Res 222:55–76

    Article  Google Scholar 

  • Zhong CT, Deng JF, Wan YS (2007) Magma recording of Paleoproterozoic orogeny in central segment of northern margin of North China Craton: geochemical characteristics and zircon shrimp dating of s-type granitoids. Geochimica 36:585–600

    Google Scholar 

  • Zhou XW, Zhao GC, Geng YS (2010) Helanshan high pressure pelitic granulite: petrologic evidence for collision event in the western block of the North China Craton. Acta Petrol Sin 26:2113–2121 (in Chinese with English abstract)

    Google Scholar 

  • Zhou LG, Zhai MG, Lu JS, Zhao L, Wang HZ, Wu JL, Liu B, Zou Y, Shan HX, Cui XH (2017) Paleoproterozoic metamorphism of high-grade granulite facies rocks in the North China Craton: study advances, questions and new issues. Precambrian Res 303:520–547

    Article  Google Scholar 

Download references

Acknowledgements

We thank Xiaoli Li for his assistance with experimentation. We appreciate the constructive comments and suggestions from reviews Alexander Proyer and Martin Racek and the thorough editorial work of editors Shah Wali Faryad and Lutz Nasdala. The present study was financially supported by the National Natural Science Foundation of China (grants 42030304 and 4189083013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Jing Wei.

Additional information

Editorial handling: S. W. Faryad

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Wei, CJ. & Tian, W. Evolution of spinel-bearing ultrahigh-temperature granulite in the Jining complex, North China Craton: constrained by phase equilibria and Monte Carlo methods. Miner Petrol 115, 283–297 (2021). https://doi.org/10.1007/s00710-021-00743-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-021-00743-1

Keywords

Navigation