Skip to main content
Log in

Stergiouite, CaZn2(AsO4)2 · 4H2O – a new mineral from the Lavrion Mining District, Greece

Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Stergiouite is a new mineral from the Plaka area in the northern part of the Lavrion Mining District, Greece. The mineral occurs as clusters of stacked, platy crystals, associated with galena, sphalerite, native arsenic and sulfur. The crystals are white to colorless, with a pearly luster and white streak. No luminescence under ultraviolet (UV) radiation is observed. Stergiouite is brittle and has a Mohs hardness of ~3. Chemical analysis gave As2O5 42.93 wt%; Sb2O5 2.45 wt%; CaO 10.90 wt%; ZnO 29.79 wt%; and H2Ocalc 13.93 wt%, which corresponds to an empirical formula Ca1.02Zn1.91((As0.95Sb0.08)O4)Σ2.03 · 4H2O. The ideal formula is CaZn2(AsO4)2 · 4H2O. Stergiouite is monoclinic, space group Pc, with unit-cell parameters a 9.416(2) Å; b 5.300(1) Å; c 10.893(2) Å; β 91.767(10)°; V 543.36(3) Å3; Z = 2. The strongest lines in the Gandolfi X-ray powder pattern [d in Å, I/I100, (hkl)] are: 9.406, 100, (100); 4.619, 80, (102), (110); 3.612, 35, (20\( \overline{2} \)); 3.494, 35, (112); 2.984, 60, (21\( \overline{2} \)); 2.922, 50, (212); 2.720, 20, (004); and 2.647, 25, (020). The crystal structure was refined based on single-crystal X-ray diffraction data to R1 = 0.046, wR2 = 0.093. The observed mass density of 3.1(2) g cm−3 compares well with the calculated value (3.183 g cm−3). The framework structure of stergiouite is built up by one type of CaO2(H2O)4 octahedron and each two ZnO4 and AsO4 tetrahedra. These polyhedra share common corners to form three- and four-membered rings. A system of hydrogen bonds (O–O range: 2.70–3.02 Å) further stabilizes the structure. The crystal structure of stergiouite is closely related to that of phosphophyllite [Fe[6]Zn2[4](PO4)2 · 4H2O] as well as with members of the hopeite [Zn[6]Zn2[4](PO4)2 · 4H2O] group. Stergiouite is named in honour of Vasilis Stergiou (born 1958) in recognition of his contributions to the mineralogy of the Lavrion deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Chao GY (1969) Refinement of the crystal structure of parahopeite. Z Kristallogr 130:261–266

    Article  Google Scholar 

  • Chukanov NV, Pekov I, Belakovskiy DI, Britvin SN, Stergiou V, Voudouris P, Magganas A (2018) Katerinopoulosite, (NH4)2Zn(SO4)2·6H2O, a new mineral from the Esperanza mine, Lavrion, Greece. Eur J Mineral 30:821–826

    Article  Google Scholar 

  • Conophagos CE (1980) Le Laurium antique et la technique grecque de la production de l'argent. Ekdotike Hellados (National Technical University), Athens, Greece, 458 pp (in French)

  • Dowty E (2016) Atoms V6.5.0 for atomic structure display. Shape software, 521 Hidden Valley road, Kingsport, TN 37663 USA

  • Gagné OC, Hawthorne FC (2016) Bond–length distributions for ions bonded to oxygen: alkali and alkaline–earth metals. Acta Crystallogr B 72:602–625

    Article  Google Scholar 

  • Gagné OC, Hawthorne FC (2018) Bond–length distributions for ions bonded to oxygen: metalloids and post-transition metals. Acta Crystallogr B 74:63–78

    Article  Google Scholar 

  • Gandolfi G (1964) Metodo per ottenere uno spettro di polveri da un cristallo singolo di piccole dimensioni (fino a 30 μ). Mineral Petrogr Acta 10:149–156

    Google Scholar 

  • Giester G, Rieck B (1995) Mereiterite, K2Fe[SO4]2·4H2O, a new leonite–type mineral from the Lavrion Mining District, Greece. Eur J Mineral 7:559–566

    Article  Google Scholar 

  • Giester G, Rieck B (2014) Crystal structure refinement of aurichalcite, (Cu,Zn)5(CO3)2(OH)6, from the Lavrion Mining District, Greece. Neues Jb Miner Abh: J Mineral Geochem 191:225–232

    Article  Google Scholar 

  • Giester G, Rieck B, Brandstätter F (1998) Niedermayrite Cu4Cd(SO4)2(OH)6·4H2O, a new mineral from the Lavrion Mining District, Greece. Mineral Petrol 63:19–34

    Article  Google Scholar 

  • Giester G, Lengauer CL, Rieck B (2000) The crystal structure of nesquehonite, MgCO3 · 3H2O, from Lavrion, Greece. Mineral Petrol 70:153–163

    Article  Google Scholar 

  • Giester G, Kolitsch U, Leverett P, Turner P, Williams PA (2007) The crystal structures of lavendulan, sampleite, and a new polymorph of sampleite. Eur J Mineral 19:75–93

    Article  Google Scholar 

  • Gladstone JH, Dale TP (1863) Researches on the refraction, dispersion, and sensitiveness of liquids. Phil Trans R Soc London 153:317–343

    Article  Google Scholar 

  • Hawthorne FC, Cooper MA, Abdu YA, Ball NA, Back ME, Tait KT (2012) Davidlloydite, ideally Zn3(AsO4)2(H2O)4, a new arsenate mineral from the Tsumeb mine, Otjikoto (Oshikoto) region, Namibia: description and crystal structure. Mineral Mag 76(1):45–57

    Article  Google Scholar 

  • Herschke L, Enkelmann V, Lieberwirth I, Wegner G (2004) The role of hydrogen bonding in the crystal structures of zinc phosphate hydrates. Chem Eur J 10(11):2795–2803

    Article  Google Scholar 

  • Hill RJ (1977) The crystal structure of phosphophyllite. Am Mineral 62:812–817

    Google Scholar 

  • Hill RJ, Jones JB (1976) The crystal structure of hopeite. Am Mineral 61:987–995

    Google Scholar 

  • Holland TJB, Redfern SAT (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineral Mag 61:65–77

    Article  Google Scholar 

  • Kampf AR, Falster AU, Simmons WB, Whitmore RW (2015) Nizamoffite, Mn2+Zn2(PO4)2(H2O)4, the Mn analogue of hopeite from the Palermo no. 1 pegmatite, North Groton, New Hampshire. Am Mineral 98:1893–1898

    Article  Google Scholar 

  • Kolitsch U, Giester G (2013) The crystal structure of a new secondary zinc mineral from Lavrion, Greece: Zn9(SO4)2(OH)12Cl2·6H2O. Mitt Österr Mineral Ges 159:74

    Google Scholar 

  • Kolitsch U, Rieck B, Brandstätter F, Schreiber F, Fabritz KH, Blaß G, Gröbner J (2014a) Neufunde aus dem altem Bergbau und den Schlacken von Lavrion (I). Mineralien-Welt 25:60–75

    Google Scholar 

  • Kolitsch U, Rieck B, Brandstätter F, Schreiber F, Fabritz KH, Blaß G, Gröbner J (2014b) Neufunde aus dem altem Bergbau und den Schlacken von Lavrion (II). Mineralien-Welt 25:82–95

    Google Scholar 

  • Kolitsch U, Rieck B, Voudouris P (2015) Mineralogy and genesis of the Lavrion ore deposit: new insights from the study of ore and accessory minerals. Mitt Österr Mineral Ges 161:66

    Google Scholar 

  • Krause W, Bernhardt HJ, Braithwaite RSW, Kolitsch U, Pritchard R (2006) Kapellasite, Cu3Zn(OH)6Cl2, a new mineral from Lavrion, Greece. Mineral Mag 70:329–340

    Article  Google Scholar 

  • Laubmann H, Steinmetz H (1920) Der Pegmatit von Hagendorf. Z Kristallogr 55:557–570

    Google Scholar 

  • Mandarino JA (1976) The Gladstone–Dale relationship - part I: derivation of new constants. Can Mineral 14:498–502

    Google Scholar 

  • Mandarino JA (1981) The Gladstone-Dale relationship: part IV. The compatibility concept and its application. Can Mineral 19:441–450

    Google Scholar 

  • Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data – V.3.4.3. J Appl Crystallogr 44:1272–1276

    Article  Google Scholar 

  • Neubauer F (2005) Structural control of mineralization in metamorphic core complexes. In: Mao J, Bierlein FP (eds) Mineral deposit research: meeting the global challenge. Springer, Berlin, pp 561–564

    Chapter  Google Scholar 

  • Neuhold F, Kolitsch U, Bernhardt HJ, Lengauer CL (2012) Arsenohopeite, a new zinc arsenate mineral from the Tsumeb mine, Namibia. Mineral Mag 76(3):603–612

    Article  Google Scholar 

  • Pawlig O, Schellenschläger V, Lutz HD, Trettin R (2001) Vibrational analysis of iron and zinc phosphate conversion coating constituents. Spectrochim Acta A 57:581–590

    Article  Google Scholar 

  • Rieck B (1999) Seltene Arsenate aus der Kamariza und weitere Neufunde. Lapis 24(7/8):68–76

    Google Scholar 

  • Rieck B (2012) Neue Minerale aus dem Lagerstätten-Bezirk Lavrion/Griechenland und den Kalahari Mangan Feldern/Republik Südafrika. PhD Thesis, University of Vienna, 183 pp

  • Rieck B, Rieck P (1999) Silber, Arsen und Antimon: Vererzungen im Revier Plaka (Teil II). Lapis 24(7/8):59–63

    Google Scholar 

  • Rieck B, Wendel W (1999) Sounion - Hilarion Top aktuell: Funde vom Frühjahr '99. Lapis 24(7/8):77–78

    Google Scholar 

  • Rieck B, Kolitsch U, Voudouris P, Giester G, Tzeferis P (2018) Weitere Neufunde aus Lavrion, Griechenland. Mineralien-Welt 29(5):32–77

    Google Scholar 

  • Rieck B, Lengauer CL, Giester G (2019) Voudourisite, Cd(SO4)·H2O, and lazaridisite, Cd3(SO4)3·8H2O, two new minerals from the Lavrion Mining District, Greece. Mineral Mag 83:551–559

  • Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A64:112–122

    Article  Google Scholar 

  • Skarpelis N (2002) Geodynamics and evolution of the Miocene mineralization in the Cycladic-Pelagonian belt, Hellenides. Bull Geol Soc Greece 34:2191–2209

    Article  Google Scholar 

  • Strunz H, Nickel EH (2001) Strunz mineralogical tables. 9th edn. E. Schweitzerbart’sche Verlagsbuchhandlung (Nägele und Obermiller), Stuttgart. ISBN 978-51-6518-7

  • Thomas IA, Weller MT (1992) Synthesis, structure and thermal properties of phosphophyllite, Zn2Fe(PO4)2 · 4H2O. J Mater Chem 2:1123–1126

    Article  Google Scholar 

  • Tombros SF, Seymour KS, Spry P (2004) Description and conditions of formation of new unnamed Ag–Cu and Ag–Cu–Au sulfotellurides in epithermal polymetallic Ag–Au–Te mineralization, Tinos Island, Hellas. Neues Jb Miner Abh 179:295–310

  • Tombros SF, Seymour K, Williams-Jones AE, Spry P (2007) The genesis of epithermal Au–Ag–Te mineralization, Panormos Bay, Tinos Island, Cyclades, Greece. Econ Geol 102:1269–1294

  • Vavelidis M (1997) Au–bearing quartz veins and placer gold on Sifnos Island, Aegean Sea, Greece. In: Papunen H (ed) mineral deposits: research and exploration - where do they meet? Balkema, pp 335–338

  • Voudouris P (2005) Gold and silver mineralogy of the Lavrion deposit Attika/Greece. In: Mao J, Bierlein FP (eds) Mineral deposit research: meeting the global challenge. Springer, Berlin Heidelberg, pp 1089–1092

    Chapter  Google Scholar 

  • Wendel W, Rieck B (1999a) Die wichtigsten Mineralfundstellen Lavrions. Lapis 24(7/8):25–33

    Google Scholar 

  • Wendel W, Rieck B (1999b) Silber, Arsen und Antimon: Vererzungen im Revier Plaka (Teil I). Lapis 24(7/8):53–58

    Google Scholar 

  • Zeug M, Nasdala L, Wanthanachaisaeng B, Balmer WA, Corfu F, Wildner M (2018) Blue zircon from Ratanakiri, Cambodia. J Gemmol 36(2):112–132

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Fernando Camera, Anthony R. Kampf and Jakub Plasil for critical and constructive reviews. We thank associate editor Nikita V. Chukanov for corrections and helpful comments that helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald Giester.

Additional information

Editorial handling: N. V. Chukanov

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rieck, B., Giester, G., Lengauer, C.L. et al. Stergiouite, CaZn2(AsO4)2 · 4H2O – a new mineral from the Lavrion Mining District, Greece. Miner Petrol 114, 319–327 (2020). https://doi.org/10.1007/s00710-020-00702-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-020-00702-2

Keywords

Navigation