Skip to main content

Advertisement

Log in

Petrogenesis of mafic dykes from the western Bastar craton of Central India and their relation to outgrowth of Columbia supercontinent

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We report mineral compositions and bulk rock geochemistry of mafic dykes intruded in the western part of Bastar craton, comprising of Archaean Amgaon Group and Proterozoic Dongargarh Supergroup of rocks. Field relations show two distinct trends of these dykes which are almost perpendicular to each other but having similar mineralogical and geochemical characteristics. Dykes are mostly composed of pyroxenes, plagioclase and subordinate amount of amphiboles and Fe-Ti oxides (magnetite and ilmenite). These hypersthene normative basaltic dykes show tholeiitic trend and are characterised by narrow compositional variations of MgO (6.06–7.08 wt%), FeOt (15.06–17.78 wt%), TiO2 (1.18–2.24 wt%), Al2O3 (11.96–15.54 wt%) and low Mg# [atomic Mg/(Mg + Fe2+) × 100] values in the range of 37–48. Low loss on ignition (LOI) values <2 wt% and significant trends of trace elements (Nb, La, Th, Sr) with Zr indicate insignificant effects of post magmatic processes in these dykes. Smooth correlations between major oxides and MgO, among trace element ratios (Ce/La, Th/Yb, Nb/Yb) and negative Nb-Ta anomalies without positive Zr and Hf anomalies negate the crustal contamination effects. The correlations of compatible (e.g. Cr, Ni) and incompatible (e.g. Ba, Rb) elements show involvement of both fractional crystallisation and partial melting processes in their formation. Flat heavy rare earth element (HREE) pattern with low (Tb/Yb)n values reveal their genesis from a mantle source without involvement of garnet and geochemical models suggested in the present study indicate melting from spinel lherzolite mantle source. Strong geochemical similarities of present dykes with those of earlier reported Lakhna (1.46 Ga) and Bandimal (1.42 Ga) dykes of northern Bastar craton suggest a widespread mafic magmatic event across the Bastar craton during 1.42–1.46 Ga. Present dykes therefore represent a subduction related outgrowth of Columbia supercontinent due to the accretion of continental margins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abdul Azeez KK, Patro PK, Harinarayana T, Sarma SVS (2017) Magnetotelluric imaging across the tectonic structures in the eastern segment of the central Indian tectonic zone: preserved imprints of polyphase tectonics and evidence for suture status of the tan shear. Precambrian Res 298:325–340

    Article  Google Scholar 

  • Alam M, Naushad M, Wanjari N, Ahmad T (2009) Geochemical characterizations of mafic magmatic rocks of the central Indian shield: implication for Precambrian crustal evolution. J Virtual Explor. https://doi.org/10.3809/jvirtex.2009.00246

  • Baer G, Heimann A (1995) Physics and chemistry of dykes. Balkema, Rotterdam

    Google Scholar 

  • Bhowmik SK, Wilde SA, Bhandari A (2011) Zircon U-Pb/Lu-Hf and monazite chemical dating of the Tirodi biotite gneiss: implication for latest Palaeoproterozoic to early Mesoproterozoic orogenesis in the central Indian tectonic zone. Geol J 46:574–596

    Article  Google Scholar 

  • Bleeker W (2003) The late Archaean record: a puzzle in ca. 35 pieces. Lithos 71:99–134

    Article  Google Scholar 

  • Bleeker W, Ernst RE (2006) Short-lived mantle generated magmatic events and their dyke swarms: the key unlocking Earth's paleogeographic record back to 2.6 Ga. In: Hanski E, Mertanen S, Rämö T, Vuollo J (eds) Dyke swarms- time markers of crustal evolution. Taylor & Francis, London, pp 3–26

    Chapter  Google Scholar 

  • Cai K, Sun M, Yuan C, Zhao G, Xiao W, Long X, Wu F (2010) Geochronological and geochemical study of mafic dykes from the northwest Chinese Altai: implications for petrogenesis and tectonic evolution. Gondwana Res 18:638–652

    Article  Google Scholar 

  • Callot JP, Geoffrey L (2004) Magma flow directions in the East Greenland dyke swarm inferred from studies of anisotropy of magnetic susceptibility: magmatic growth of a volcano margin. Geophys J Int 159:816–830

    Article  Google Scholar 

  • Carmichael ISE (1967) The iron-titanium oxides of salic volcanic rocks and their associated ferromagnesian silicates. Contrib Mineral Petrol 14(1):36–64

    Article  Google Scholar 

  • Chalapathi Rao NV, Srivastava RK (2009) A new find of boninite dyke from the Paleoproterozoic Dongargarh Supergroup: inference for a fossil subduction zone in the Archaean of the Bastar craton, Central India. Neues Jahrb Mineral Abh 186(3):271–282

    Google Scholar 

  • Chalapathi Rao NV, Burgess R, Lehmann B, Mainkar D, Pande SK, Hari KR, Bodhankar N (2011) 40Ar/39Ar ages of mafic dykes from the Mesoproterozoic Chhattisgarh basin, Bastar craton, Central India: implication for the origin and spatial extent of the Deccan large igneous province. Lithos 125:995–1005

    Google Scholar 

  • Chaudhuri AK, Saha D, Deb DK, Deb SP, Mukherjee MK, Ghosh G (2002) The Purana basins of southern cratonic provinces of India: a case for Mesoproterozoic fossil rifts. Gondwana Res 5:23–33

    Article  Google Scholar 

  • Cocherie A (1986) Systematic use of trace element distribution patterns in log-log diagrams for plutonic suites. Geochim Cosmochim Acta 50:2517–2522

    Article  Google Scholar 

  • Condie KC (2003) Incompatible element ratios in oceanic basalts and komatiites: tracking deep mantle sources and continental growth rates with time. Geochem Geophys Geosyst. https://doi.org/10.1029/2002GC000333

    Article  Google Scholar 

  • Condie KC (2005) High field strength element ratios in Archaean basalts: a window to evolving sources of mantle plumes. Lithos 79:491–504

    Article  Google Scholar 

  • Condie KC (2015) Changing tectonic settings through time: indiscriminate use of geochemical discriminant diagrams. Precambrian Res 266:587–591

    Article  Google Scholar 

  • Das P, Das K, Chakraborty PP, Balakrishnan S (2011) 1420 ma diabasic intrusives from the Mesoproterozoic Singhora group, Chhattisgarh Supergroup, India: implications towards non-plume intrusive activity. J Earth Syst Sci 120:223–236

    Article  Google Scholar 

  • De Souza ZR, Martin H, Peucat JJ, Jardin de Sa EF, de Freitas Macedo MH (2007) Calk-alkaline magmatism at the Archaean-Proterozoic transition: the Caico complex basement (NE Brasil). J Petrol 48:2149–2185

    Article  Google Scholar 

  • Devaraju TC (1995) Dyke swarms of peninsular India. Geol Soc India Mem 33:451 pp

  • Donnelly KE, Goldstein SL, Langmuir CH, Spiegelmen M (2004) Origin of enriched ocean ridge basalts and implications for mantle dynamics. Earth Planet Sci Lett 226:347–366

    Article  Google Scholar 

  • Eggler DH, Osborn EF (1982) Experimental studies of the system MgO-FeO-Fe2O3- NaAlSi3O8-CaAl2Si2O8-SiO2 - a model for subalkaline magmas. Am J Sci 282:1012–1041

    Article  Google Scholar 

  • Ehya F (2012) Rare earth element and stable isotope (O, S) geochemistry of barite from the Bijgan deposit, Markazi Province, Iran. Mineral Petrol 104:81–93

    Article  Google Scholar 

  • Ernst RE (2007) Mafic-ultramafic large igneous provinces (LIPs): importance of the pre-Mesozoic record. Episodes 30:107–113

    Article  Google Scholar 

  • Ernst RE, Bleeker W (2010) Large igneous provinces (LIPs), giant dyke swarms, and mantle plumes: significance for breakup events within Canada and adjacent regions from 2.5 Ga to the present. Can J Earth Sci 47:695–739

    Article  Google Scholar 

  • Ernst RE, Buchan KL (1997) Giant radiating dyke swarms: their use in identifying pre- Mesozoic large igneous provinces and mantle plumes. In: Mahoney J, coffin M (eds) Large igneous provinces: continental, oceanic, and planetary volcanism. Geophys Monogr Ser 100:297–333

    Google Scholar 

  • Ernst RE, Buchan KL (2001) Large mafic magmatic events through time and links to mantle plume heads. In: Ernst RE, Buchan KL (eds) Mantle plumes: their identification through time. Geol Soc Am Spec Pap 352:483–575

    Google Scholar 

  • Ernst RE, Srivastava RK, Bleeker W, Hamilton MA (2010) Precambrian large igneous provinces (LIPs) and their dyke swarms: new insights from high-precision geochronology, paleomagnetism and geochemistry. Precambrian Res 183:vii–vxi

    Article  Google Scholar 

  • Ernst RE, Bleeker W, Söderlund U, Kerr AC (2013) Large igneous provinces and supercontinents: toward completing the plate tectonic revolution. Lithos 174:1–14

    Article  Google Scholar 

  • French JE, Heaman LM, Chacko T, Srivastava RK (2008) 1891-1883 Ma southern Bastar-Cuddapah mafic igneous events, India: a newly recognized large igneous province. Precambrian Res 160:308–322

    Article  Google Scholar 

  • Frey FA, Green DH, Roy SD (1978) Integrated models of basalt petrogenesis: a study of quartz tholeiites to olivine melilites from SE Australia utilizing geochemical and experimental petrological data. J Petrol 19:463–513

    Article  Google Scholar 

  • Gamble RP, Taylor LA (1980) Crystal/liquid partitioning in augite: effects of cooling rate. Earth Planet Sci Lett 47:21–33

    Article  Google Scholar 

  • Gautam GC, Srivastava RK (2011) Petrology, geochemistry and petrogenesis of early Precambrian mafic dyke swarm from Dondi-Bhanupratappur-Keshkal, central Bastar craton, India. In: Srivastava RK (ed) Dyke swarms: keys for geodynamic interpretation. Springer-Verlag, Heidelberg, pp 203–218

    Chapter  Google Scholar 

  • Ghosh JG (2004) 3.56 Ga tonalite in the central part of the Bastar craton, India: oldest Indian date. J Asian Earth Sci 23:359–364

    Article  Google Scholar 

  • Glazner A, Bartley J, Carl B (1999) Oblique opening and noncoaxial emplacement of the Jurassic independence dyke swarm, California. J Struct Geol 21:1275–1283

    Article  Google Scholar 

  • Gomez-Pugnaire MT, Ulmer P, Lopez Sanchez-Vizcaino V (2000) Petrogenesis of the mafic igneous rocks of the Betic Cordilleras: a field, petrological and geochemical study. Contrib Mineral Petrol 139:436–457

    Article  Google Scholar 

  • Green TH, Sie SH, Ryan CG, Cousens DR (1989) Proton microprobe determined partitioning of Nb, Ta, Zr, Sr and Y between garnet, clinopyroxene and basaltic magma at high pressure and temperature. Chem Geol 74:201–216

    Article  Google Scholar 

  • Gruau G, Chauvel C, Arndt NT, Cornichet J (1990) Aluminum depletion in komatiites and garnet fractionation in the early Archaean mantle: hafnium isotopic constraints. Geochim Cosmochim Acta 54:3095–3101

    Article  Google Scholar 

  • Halls HC (1987) Dyke swarms and continental rifting: some concluding remarks. In: Halls HC, Fahrig WF (eds) Mafic dyke swarms. Geol Assoc Can Spec Pap 34:483–492

    Google Scholar 

  • Hanson GN (1980) Rare earth elements in petrogenetic studies of igneous rocks. Annu Rev Earth Planet Sci 8:37l–406l

  • Hazarika B, Malpe DB, Dongre AN (2019) Petrology and geochemistry of a boninite dyke from the western Bastar craton of Central India. J Earth Syst Sci 128:1–17

    Article  Google Scholar 

  • Hollings P, Kerrich R (2000) An Archaean arc basalt-Nb-enriched basalts-adakite association: the 2.7 Ga confederation assemblage of the birch–Uchi greenstone belt, Superior Province. Contrib Mineral Petrol 139:208–226

    Article  Google Scholar 

  • Ilnicki S (2010) Petrogenesis of continental mafic dykes from the Izera complex, Karkonosze-Izera block (West Sudetes, SW Poland). Int J Earth Sci 99:745–773

    Article  Google Scholar 

  • Irvin TN, Baragar WRA (1971) A guides to chemical classification of the common volcanic rocks. Can J Earth Sci 8:523–548

    Article  Google Scholar 

  • Jenner GA, Foley SF, Jackson SE, Green TH, Fryer BJ, Longerich HP (1994) Determination of partition coefficients for trace elements in high pressure-temperature experimental run products by laser ablation microprobe-inductively coupled plasma mass spectrometry (LAM-ICP-MS). Geochim Cosmochim Acta 58:5099–5130

    Google Scholar 

  • Jung S, Masberg P (1998) Major and trace element systematics and isotope geochemistry of Cenozoic mafic volcanic from the Vogelsberg (Central Germany): constraints on the origin of continental alkaline and tholeiitic basalts and their mantle sources. J Volcanol Geotherm Res 86:151–177

    Article  Google Scholar 

  • Kalsbeek F, Taylor PN (1986) Age and origin of early Proterozoic dolerite dykes in Southwest Greenland. Contrib Mineral Petrol 89:307–316

    Article  Google Scholar 

  • Lai SC, Qin JF (2009) Geochemistry and tectonic significance of the Permian basalt in Shuanghu area, Tibetan plateau. Earth Sci Front 16:70–78

    Google Scholar 

  • Le Maitre RW (2002) Igneous rocks: a classification and glossary of terms. Cambridge University Press, Cambridge, 236 pp

    Book  Google Scholar 

  • LeCheminant NA, Heaman LM (1989) Mackenzie igneous events, Canada: middle Proterozoic hotspot magmatism associated with ocean opening. Earth Planet Sci Lett 96:38–48

    Article  Google Scholar 

  • Leeman WP, Hawkesworth CJ (1986) Open magma systems: trace element and isotopic constraints. J Geophys Res 94:7682–7684

    Article  Google Scholar 

  • Leterrier J, Maury R, Thonon P, Girard D, Marchal N (1982) Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series. Earth Planet Sci Lett 59:139–154

    Article  Google Scholar 

  • Liao AC, Shellnutt JG, Hari KR, Denyszyn SW, Vishwakarma N, Verma CB (2019) A petrogenetic relationship between 2.37 Ga boninitic dyke swarms of the Indian shield: evidence from the central Bastar craton and the NE Dharwar craton. Gondwana Res 69:193–211

    Article  Google Scholar 

  • Liu SJ, Tsunogae T, Li WS, Shimizu H, Santosh M, Wan YS, Li JH (2012) Paleoproterozoic granulites from Helinger: implications for regional ultra-high temperature metamorphism in the North China craton. Lithos 148:54–70

    Article  Google Scholar 

  • Manikyamba C, Khanna TC (2007) Crustal growth processes as illustrated by the Neoarchaean intraoceanic magmatism from Gadwal greenstone belt, eastern Dharwar craton, India. Gondwana Res 11:476–491

    Article  Google Scholar 

  • McHone JG, Anderson DL, Beutel EK, Fialko YA (2005) Giant dykes, rifts, flood basalts, and plate tectonics: a contention of mantle models. In: Foulger GR, Natland JH, Presnall DC, Anderson DL (eds) plates, plumes and paradigms. Geol Soc Am Spec Pap 388:401–420

    Google Scholar 

  • McKenzie DP, O’Nions RK (1991) Partial melt distributions from inversion of rare earth element concentrations. J Petrol 32:1021–1091

    Article  Google Scholar 

  • Meert JG (2002) Paleomagnetic evidence for a Paleo-Mesoproterozoic supercontinent, Columbia. Gondwana Res 5:207–215

    Article  Google Scholar 

  • Meert JG (2012) What's in a name? The Columbia (Palaeopangea/Nuna) supercontinent. Gondwana Res 21:987–993

    Article  Google Scholar 

  • Meert JG (2014) Strange attractors, spiritual interlopers and lonely wanderers: the search for pre-Pangaean supercontinents. Geosci Front 5:155–166

    Article  Google Scholar 

  • Meert JG, Pandit MK, Pradhan VR, Banks JC, Sirianni R, Stroud M, Newstead B, Gifford J (2010) The Precambrian tectonic evolution of India: a 3.0 billion year odyssey. J Asian Earth Sci 39:483–515

    Article  Google Scholar 

  • Meert JG, Pandit MK, Pradhan VR, Kamenov GD (2011) Preliminary report on the paleomagnetism of 1.88 Ga dykes from the Bastar and Dharwar cratons. Gondwana Res 20:335–343

    Article  Google Scholar 

  • Meert JG, Pandit MK, Pivarunas A, Katusin K, Sinha AK (2017) India and Antarctica in the Precambrian: a brief analysis. In: Pant NC, Dasgupta S (eds) crustal evolution of India and Antarctica: the supercontinent connection. Geol Soc Lond Spec Publ. https://doi.org/10.1144/SP457.13

    Article  Google Scholar 

  • Melluso L, Sethna SF (2011) Mineral compositions of the Deccan igneous rocks of India: an overview. In: Ray J, Sen G, Ghosh B (eds) Topics in igneous petrology. Springer, Heidelberg, pp 135–160

    Chapter  Google Scholar 

  • Merlet C (1994) An accurate computer correction program for quantitative electron probe microanalysis. Mikrochim Acta 114(115):363–376

    Article  Google Scholar 

  • Murthy NGK (1987) Mafic dyke swarms of the Indian shield. In: Halls HC, Fahrig WF (eds) mafic dyke swarms. Geol Assoc Can Spec Pap 34:393–400

    Google Scholar 

  • Nance RD, Murphy JB, Santosh M (2014) The supercontinent cycle: a retrospective essay. Gondwana Res 25:4–29

    Article  Google Scholar 

  • Osborn EF (1959) Role of oxygen pressure in the crystallization and differentiation of basaltic magma. Am J Sci 257:609–647

    Article  Google Scholar 

  • Pant NC, Dasgupta S (2017) An introduction to the crustal evolution of India and Antarctica: the supercontinent connection. In: Pant NC, Dasgupta S (eds) crustal evolution of India and Antarctica: the supercontinent connection. Geol Soc Lond Spec Publ 457:1–6

    Article  Google Scholar 

  • Pearce JA (1982) Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe R (ed) Andesites: orogenic andesites and related rocks. Willey, Chichester, pp 525–548

    Google Scholar 

  • Pearce JA (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archaean oceanic crust. Lithos 100:14–48

    Article  Google Scholar 

  • Pearce JA, Peate DW (1995) Tectonic implications of the composition of volcanic arc magmas. Annu Rev Earth Planet Sci 23:251–285

    Article  Google Scholar 

  • Peng P, Zhai M, Ernst RE, Guo J, Liu G, Hu B (2008) A 1.78 Ga large igneous province in North China craton: the Xiong’er volcanic province and the North China dyke swarm. Lithos 101:260–280

    Article  Google Scholar 

  • Pisarevsky SA, Bylund G (2010) Paleomagnetism of 1780-1770 ma mafic and composite intrusions of Småland (Sweden): implications for the Mesoproterozoic supercontinent. Am J Sci 310:1168–1186

    Article  Google Scholar 

  • Pisarevsky SA, Biswal TK, Wang X-C, De Waele B, Ernst R, Söderlund U, Tait JA, Ratre K, Singh YK, Cleve M (2013) Palaeomagnetic, geochronological and geochemical study of Mesoproterozoic Lakhna dykes in the Bastar craton, India: implications for the Mesoproterozoic supercontinent. Lithos 174:125–143

    Article  Google Scholar 

  • Polat A, Hofmann AW (2003) Alteration and geochemical patterns in the 3.7–3.8 Ga Isua greenstone belt, West Greenland. Precambrian Res 126:197–218

    Article  Google Scholar 

  • Presnall DC (1966) The join forsterite-diopside-iron oxide and its bearing on the crystallization of basaltic and ultramafic magmas. Am J Sci 264:753–809

    Article  Google Scholar 

  • Rajesh HM, Mukhopadhyay J, Beukes NJ, Gutzmer J, Belyanin GA, Armstrong RA (2009) Evidence for an early Archaean granite from Bastar craton, India. J Geol Soc Lond 166:193–196

    Article  Google Scholar 

  • Ramakrishnan M, Vaidyanadhan R (2010) Geology of India. Geol Soc India, Bangalore, 994 pp

    Google Scholar 

  • Ratre K, De Waele B, Biswal TK, Sinha S (2010) SHRIMP geochronology for the 1450 ma Lakhna dyke swarm: its implication for the presence of Eoarchean crust in the Bastar craton and 1450-517 ma depositional age for Purana basin (Khariar), eastern Indian peninsula. J Asian Earth Sci 39:565–577

    Article  Google Scholar 

  • Rogers JJW (1996) A history of continents in the past three billion years. J Geol 104:91–107

    Article  Google Scholar 

  • Rogers JJW, Santosh M (2002) Configuration of Columbia, a Mesoproterozoic supercontinent. Gondwana Res 5:5–22

    Article  Google Scholar 

  • Rogers JJW, Santosh M (2003) Supercontinents in earth history. Gondwana Res 6:357–368

    Article  Google Scholar 

  • Rogers JJW, Santosh M (2004) Continents and supercontinents. Oxford University Press, New York, 289 pp

    Google Scholar 

  • Rogers JJW, Santosh M (2009) Tectonics and surface effects of the supercontinent Columbia. Gondwana Res 15:373–380

    Article  Google Scholar 

  • Rollinson H (1993) Using geochemical data: evaluation, presentation, interpretation. Longman, Essex, 352 pp

    Google Scholar 

  • Roy A, Prasad HM (2003) Tectonothermal events in central Indian tectonic zone and its implications in Rodinian crustal assembly. J Asian Earth Sci 22:115–129

    Article  Google Scholar 

  • Roy A, Ramachandra HM, Bandyopadhyay B (2000) Supracrustal belts and their significance in the crustal evolution of Central India. Geol Surv India Spec Publ 55:361–380

    Google Scholar 

  • Rudnick RL (1995) Making continental crust. Nature 378:571–578

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. In: Rudnick RL, Holland HD, Turekian KK (eds) Treatise on geochemistry - the crust, 3rd vol. Elsevier, Oxford, pp 1–64

    Google Scholar 

  • Salminen J, Pesonen LJ (2007) Paleomagnetic and rock magnetic study of the Mesoproterozoic sill, Valaam island, Russian Karelia. Precambrian Res 159:212–230

    Article  Google Scholar 

  • Samal AK, Srivastava RK, Ernst RE, Söderlund U (2019) Neoarchean-Mesoproterozoic mafic dyke swarms of the Indian shield mapped using Google earth™ images and ArcGIS™, and links with large igneous provinces. In: Srivastava RK, Ernst R, Peng P (eds) Dyke swarms of the world: a modern perspective, Springer Nature Singapore Pvt Ltd., pp 335-390

  • Santosh M, Tanaka K, Yokohama K, Collins A (2005) Late Neoproterozoic– Cambrian felsic magmatism along transcrustal shear zones in southern India; U-Pb electron microprobe ages and implications for the amalgamation of the Gondwana supercontinent. Gondwana Res 8:31–42

    Article  Google Scholar 

  • Sarkar G, Corfu F, Paul DK, Mcnaughton NJ, Gupta SN, Bishui PK (1993) Early Archaean crust in Bastar craton, Central India - a geochemical and isotopic study. Precambrian Res 62:127–137

    Article  Google Scholar 

  • Shellnutt JG, Hari KR, Liao AC, Denyszyn SW, Vishwakarma N (2018) A 1.88 Ga giant radiating mafic dyke swarm across southern India and western Australia. Precambrian Res 308:58–74

    Article  Google Scholar 

  • Shellnutt JG, Hari KR, Liao AC, Denyszyn SW, Vishwakarma N, Deshmukh SD (2019) Petrogenesis of the 1.85?Ga Sonakhan mafic dyke swarm, Bastar craton, India. Lithos (in press). https://doi.org/10.1016/j.lithos.2019.03.015

    Article  Google Scholar 

  • Sheth HC, Melluso L (2008) The mount Pavagadh volcanic suite, Deccan traps: geochemical stratigraphy and magmatic evolution. J Asian Earth Sci 32:5–21

    Article  Google Scholar 

  • Sheth HC, Pande K (2004) Magmatism in India through time. Proceedings of the Indian Academy of Sciences (Earth and Planetary Sciences) 113:517–838

    Google Scholar 

  • Shilling JG, Zajac M, Evans R, Johnston T, White W, Devine JD, Kingsley R (1983) Petrogolical and geochemical variations along the mid-Atlantic ridge from 29°N to 73°N. Am J Sci 283:510–586

    Article  Google Scholar 

  • Smirnov AV, Evans DAD, Ernst RE, Söderlund U, Li Z-X (2013) Trading partners: tectonic ancestry of southern Africa and western Australia, in Archaean supercratons Vaalbara and Zimgarn. Precambrian Res 224:11–22

    Article  Google Scholar 

  • Srivastava RK (2006) Geochemistry and petrogenesis of Neoarchaean high-Mg low-Ti mafic igneous rocks in an intracratonic setting, Central India craton: evidence for boninite magmatism. Geochem J 40:15–31

    Article  Google Scholar 

  • Srivastava RK (2008) Global intracratonic boninite-norite magmatism during the Neoarchaean-Palaeoproterozoic: evidence from the central Indian Bastar craton. Int Geol Rev 50:61–74

    Article  Google Scholar 

  • Srivastava RK (2011) Dyke swarms: keys for geodynamic interpretation. Springer- Verlag, Heidelburg, 605 pp

    Book  Google Scholar 

  • Srivastava RK, Ahmad T (2008) Precambrian mafic magmatism in the Indian shield- part I. J Geol Soc India 72(1):140

    Google Scholar 

  • Srivastava RK, Gautam GC (2009) Precambrian mafic magmatism in the Bastar craton, Central India. J Geol Soc India 73:52–72

    Article  Google Scholar 

  • Srivastava RK, Gautam GC (2012) Early Precambrian mafic dyke swarms from the central Archaean Bastar craton, India: geochemistry, petrogenesis and tectonic implications. Geol J 47:144–160

    Article  Google Scholar 

  • Srivastava RK, Gautam GC (2015) Geochemistry and petrogenesis of Paleo-Mesoproterozoic mafic dyke swarms from northern Bastar craton, Central India: geodynamic implication in reference to Columbia supercontinent. Gondwana Res 28:1061–1078

    Article  Google Scholar 

  • Srivastava RK, Samal AK (2019) Geochemical characterization, petrogenesis, and emplacement tectonics of Paleoproterozoic high-Ti and low-Ti mafic intrusive rocks from the western Arunachal Himalaya, northeastern India and their possible relation to the ~1.9 Ga LIP event of the Indian shield. Geol J 54:245–265

    Article  Google Scholar 

  • Srivastava RK, Singh RK (2004) Trace element geochemistry and genesis of the Precambrian sub-alkaline mafic dykes from Central India craton: evidence for mantle metasomatism. J Asian Earth Sci 23:373–389

    Article  Google Scholar 

  • Srivastava RK, Hall RP, Verma R, Singh RK (1996) Contrasting Precambrian mafic dykes of the Bastar craton, Central India: petrological and geochemical characteristics. J Geol Soc India 48:537–546

    Google Scholar 

  • Srivastava RK, Ellam RM, Gautam GC (2009) Sr-Nd isotope geochemistry of the early Precambrian sub-alkaline mafic igneous rocks from the southern Bastar craton, Central India. Mineral Petrol 96:71–79

    Article  Google Scholar 

  • Srivastava RK, Heaman LM, French JE, Filho CFF (2011) Evidence for a Paleoproterozic event of metamorphism in the Bastar craton, Central India: P-T-t constraints from mineral chemistry and U–Pb geochronology of mafic dykes. Episodes 34:13–24

    Article  Google Scholar 

  • Srivastava RK, Pimentel MM, Gautam GC (2016) Nd isotope and geochemistry of an early Palaeoproterozoic high-Si high-Mg boninite-norite suite of rocks in the southern Bastar craton, Central India: petrogenesis and tectonic significance. Int Geol Rev 58:1596–1615

    Article  Google Scholar 

  • Subba Rao DV, Khan MWY, Sridhar DN, Nagaraju K (2007) A new find of dolerite dykes with continental flood basalt affinity from the Meso-Neoarchaean Chhattisgarh basin, Bastar craton, Central India. J Geol Soc India 69:80–84

    Google Scholar 

  • Subba Rao DV, Sridhar DN, Balaram V, Nagaraju K, Rao TG, Keshavakrishna A, Singh UP (2008) Proterozoic mafic-ultramafic dyke swarms in the vicinity of Chhattisgarh-Khariar-Singhora basins in northern Bastar craton, Central India. In: Srivastava RK, Sivaji C, Chalapathi Rao NV (eds) Indian dykes: geochemistry, geophysics and geochronology. Narosa Publishing House Pvt. Ltd., New Delhi, pp 377–396

    Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in ocean basins. Geol Soc Lond Spec Publ 42:313–345

    Article  Google Scholar 

  • Tarney J, Weaver BL (1987) Geochemistry and petrogenesis of early Proterozoic dyke swarms. In: Halls HC, Fahrig WF (eds) Mafic dyke swarms. Geol Assoc Can Spec Pap 34:81–94

    Google Scholar 

  • Wang KL, Chung SL, Chen CH, Chen C-H (2002) Geochemical constraints on the petrogenesis of high-mg basaltic andesites from the northern Taiwan volcanic zone. Chem Geol 182:513–528

    Article  Google Scholar 

  • Wang XC, Li XH, Li ZX, Liu Y, Yang YH (2010) The Willouran basic province of South Australia: its relation to the Guibei large igneous province in South China and the breakup of Rodinia. Lithos 119(3–4):569–584

    Article  Google Scholar 

  • Weaver BL (1990) Precambrian basic rocks of India. In: Hall RP, Hughes DJ (eds) Early Precambrian basic magamtism. Blakie, London, pp 339–351

    Chapter  Google Scholar 

  • Wilson M (1993) Igneous petrogenesis: a global tectonic approach. Chapman and Hall, London, pp 466

    Google Scholar 

  • Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–344

    Article  Google Scholar 

  • Wingate MTD, Pisarevsky SA, Gladkochub DP, Donskaya TV, Konstantinov KM, Mazukabzov AM, Stanevich AM (2009) Geochronology and paleomagnetism of mafic igneous rocks in the Olenek uplift, northern Siberia: implications for Mesoproterozoic supercontinents and paleogeography. Precambrian Res 170:256–266

    Article  Google Scholar 

  • Wood DA (1979) A variably veined suboceanic upper mantle- genetic significance for mid-ocean ridge basalts from geochemical evidence. Geology 7:499–503

    Article  Google Scholar 

  • Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231:53–72

    Article  Google Scholar 

  • Yang JH, Sun JF, Chen F, Wilde SA, Wu FY (2007) Sources and petrogenesis of late triassic dolerite dikes in the Liaodong peninsula: implications for post-collisional lithosphere thinning of the eastern North China craton. J Petrol 48:1973–1997

    Article  Google Scholar 

  • Yedekar DB, Jain SC, Nair KKK, Dutta KK (1990) Central Indian collision suture. Geol Soc India Spec Publ 28:1–43

    Google Scholar 

  • Yellappa T, Chetty TRK, Santosh M (2012) Tectonic framework of southern Bastar craton, Central India: a study based on different spatial information data sets. Geol J 47:161–185

    Article  Google Scholar 

  • Zegers TE, de Wit MJ, Dann J, White SH (1998) Vaalbara, Earth's oldest assembled continent? A combined structural, geochronological, and palaeomagnetic test. Terra Nova 10:250–259

    Article  Google Scholar 

  • Zhao JH, Zhou MF (2007) Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): implications for subduction related metasomatism in the upper mantle. Precambrian Res 152:27–47

    Article  Google Scholar 

  • Zhao G, Sun M, Wilde SA, Li S (2004) A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup. Earth-Sci Rev 67:91–123

    Article  Google Scholar 

  • Zhu DC, Zhao ZD, Niu YL, Mo XX, Chung SL, Hou ZQ (2011) The Lhasa terrane: record of a microcontinent and its histories of drift and growth. Earth Planet Sci Lett 301:241–255

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to Acme Analytical Laboratories Ltd., Vancouver, Canada for the whole rock analysis. We thank Rajesh Srivastava and an anonymous reviewer as well as Associate Editor Friedrich Koller and Editor-in-Chief Lutz Nasdala for their constructive comments that helped to improve the manuscript. BH is grateful to the Council of Scientific and Industrial Research (CSIR), New Delhi, for financial assistance. DBM is thankful to University Grants Commission –Special Assistance Programme- Departmental Research Support (UGC-SAP-DRS) for partial financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak B. Malpe.

Additional information

Editorial handling: F. Koller

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 379 kb)

ESM 2

(DOCX 16 kb)

ESM 3

(DOC 467 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazarika, B., Malpe, D.B. & Dongre, A. Petrogenesis of mafic dykes from the western Bastar craton of Central India and their relation to outgrowth of Columbia supercontinent. Miner Petrol 114, 243–262 (2020). https://doi.org/10.1007/s00710-020-00695-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-020-00695-y

Keywords

Navigation