Skip to main content

Nanoporous nanocrystalline impact diamonds

Abstract

Complementary nano- and atomic-scale data from SEM, FIB, HRTEM, and EELS observations of after-coal impact diamonds from the giant Kara astrobleme are described, presenting their particular nano-sized porous polycrystalline structure, which consists of well-shaped single 20-30 nm nanocrystals that are free of deformation defects and do not contain lonsdaleite. The porous micro- and nanostructure is a special typomorphic feature of after-coal diamonds that suggests a crystallisation mechanism through short distance diffusion. The data for the after-coal impact diamonds presented here demonstrate their distinguishing characteristics from after-graphite impact diamonds, and have some similarity with the enigmatic carbonado, providing new insights to the origin of the latter.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Beyerlein IJ, Zhang X, Misra A (2014) Growth Twins and Deformation Twins in Metals. Annu Rev Mater Res 44:329–363

    Article  Google Scholar 

  • Borimchuk NI, Zelyavskiy VB, Kurdyumov AV, Ostrovskaya NF, Trefilov VI, Yarosh VV (1991) Mechanism of direct phase transformations of soot and coal to diamond under impact pressing. Dokl Akad Nauk SSSR 321(1):95–98 (in Russian)

    Google Scholar 

  • Daulron TL (2001) Production of nanodiamonds by high-energy ion irradiation of graphiteat room temperature. Nucl Instr Meth Phys Res B 175(177):12–20

    Article  Google Scholar 

  • Daulton TL, Amari S, Scott AC, Hardiman M, Pinter N, Anderson RC (2016) Comprehensive analysis of nanodiamond evidence relating to the Younger Dryas Impact Hypothesis. J Quat Sci. https://doi.org/10.1002/jqs.2892

  • DeCarli PS (1998) More on the possibility of impact origin of carbonado. AIP Conf Proc 429:681

    Article  Google Scholar 

  • El Goresy A, Gillet P, Chen M, Künstler F, Graup G, Stähle V (2001) In situ discovery of shock-induced graphite-diamond phase transition in gneisses from the Ries crater, Germany. Am Mineral 86:611–621

    Article  Google Scholar 

  • Gorshkov AI, Vinokurov SF, Ryabchikov ID, Bershov LV, Magazina LO, Sivtsov AV et al (2000) Mineralogical and geochemical features of G-gold-bearing carbonado from Poxoreo District, Mato-Grosso State, Brazil. Geochem Int 38(1):1–12

    Google Scholar 

  • Haggerty SE (2014) Carbonado: Physical and chemical properties, a critical evaluation of proposed origins, and a revised genetic model. Earth Sci Rev 130:49–72

    Article  Google Scholar 

  • Haggerty SE (2017) Carbonado diamond: a review of properties and origin. Gems & Gemology 53(2):1–24

    Google Scholar 

  • Isaenko SI, Shumilova TG (2011) Thermostimulated splitting of Raman active lonsdaleite modes. Vestnik of the Institute of Geology Komi SC UB RAS 9:29–33 (in Russian)

    Google Scholar 

  • Kagi H, Takahashi K, Hidaka H, Masuda A (1994) Chemical properties of Central African carbonado and its genetic implications. Geochim Cosmochim Acta 58:2629–2638

  • Kagi H, Sato S, Akagi T, Kanda H (2007) Generation history of carbonado inferred from photoluminescence spectra, cathodoluminescence imaging, and carbon-isotopic composition. Am Mineral 92:217–224

    Article  Google Scholar 

  • Kaminskiy FV, Kliyuyev YA, Prokopchuk BI, Scheka SA, Smirnov VI, Ivanovskaya IN (1978) First carbonado and ballas finds in the Soviet Union. Akademiya Nauk SSSR Doklady 242:152–155 (in Russian)

    Google Scholar 

  • Kaminsky FV (1984) Diamond-bearing nonkimberlitic magmatic rocks. NEDRA, Leningrad (in Russian)

    Google Scholar 

  • Kaminsky FV (1987) Origin of polycrystalline carbonado diamond aggregates. Dokl Akad Nauk SSSR Earth Sci Section 294:122–123 (in Russian)

    Google Scholar 

  • Kaminsky FV (1991) Carbonado and yakutite: properties and possible genesis. In: Meyer HOA, Leonardos OH (eds) Proceedings of the Fifth International Kimberlite Conference, V.2. Diamonds: Characterization, genesis and exploration. Published by Companhia de Pesquisa de Reeursos Minerais, CPRM, Rio de Janeiro, pp 136–143

    Google Scholar 

  • Kaminsky FV, Kirikilitsa SI, Yeryomenko GK, Polkanov YA, AYa K (1979) New data on Brazilian carbonado. Doklady AN SSSR 249:443–445 (in Russian)

    Google Scholar 

  • Kaminsky FV, Wirth R, Morales L (2013) Internal texture and syngenetic inclusions in carbonado. Can Mineral 51:39–55

  • Ketcham RA, Koeberl C (2013) New textural evidence on the origin of carbonado diamond: An example of 3-D petrography using X-ray computed tomography. Geosphere 9(5):1336–1347

    Article  Google Scholar 

  • Kis VK, Shumilova T, Masaitis V (2016) HRTEM study of Popigai impact diamond: heterogeneous diamond nanostructures in native amorphous carbon matrix. Phys Chem Miner. https://doi.org/10.1007/s00269-016-0825-6

  • Koeberl C, Masaitis VL, Shafranovsky GI, Gilmour I, Langenhorst F, Schrauder M (1997) Diamonds from Popigai impact structure, Russia. Geology 25(11):967–970

    Article  Google Scholar 

  • Koeberl C, Sharpton VL, Murali AV, Burke K (1990) Kara and Ust-Kara impact structures (USSR) and their relevance to the K/T boundary event. Geology 18:50–53

    Article  Google Scholar 

  • Kurdyumov AV, Britun VF, Yarosh VV, Borimchuk NI, Danilenko AB, Zelyavskiy VB (2009) Phase transformations of soot under high temperature impact pressing. Superhard Materials 5:36–43 (in Russian)

    Google Scholar 

  • Kurdumov AV, Britun VF, Yarosh VV, Danilenko AI, Zelyavskii VB (2012) The influence of the shock compression conditions on the graphite transformations into lonsdaleite and diamond. Journal of Superhard Materials 34(1):19–27

    Article  Google Scholar 

  • Kvasnytsya V, Wirth R (2013) Micromorphology and internal structure of apographitic impact diamonds: SEM and TEM study. Diam Relat Mater 32:7–16

    Article  Google Scholar 

  • Langenhorst F, Shafranovsky G, Masaitis VL (1998) A comparative study of impact diamonds from the Popigai, Ries, Sudbury, and Lappajarvi craters. Meteorit Planet Sci 33(4):A90–A91

    Google Scholar 

  • Langenhorst F (2002) Shock metamorphism of some minerals: Basic introduction and microstructural observations. Bulletin of the Czech Geological Survey 77(4):265–282

    Google Scholar 

  • Lonsdale K (1971) Formation of lonsdaleite from single-crystal graphite. The American Mineralogist 56:333–336

    Google Scholar 

  • Masaitis VL, Futergendler SI, Gnevushev MA (1972) Diamonds in impactites of the Popigai meteoritic crater. Zapiski Vsesoyuznogo Mineralogicheskogo Obshestva 101(1):108–112 (in Russian)

    Google Scholar 

  • Masaitis VL, Maschak MS, Raykhlin AI, Shafranovsky GI, Selivanovskaya TV (1998) Diamondiferous impactites of Popigai astrobleme. VSEGEI, Saint-Petersburg (in Russian)

    Google Scholar 

  • Masaitis VL, Shafranovsky GI, Grieve RAF, Langenhorst F, Peredery WV, Therriault IG et al (1999) Impact Diamonds in the Suevitic Breccias of the Black Member of the Onaping Formation, Sudbury Structure, Ontario, Canada. Geol Soc Am Spec Pap 339:317–321

    Google Scholar 

  • Masaitis VL, Shafranovsky GI, Yezersky VN, Reshetnyak NB (1990) Impact diamonds in ureilites and impactites. Meteoritika 49:180–196 (in Russian)

    Google Scholar 

  • Mashchak MS (1991) Morphology and structure of the Kara and Ust'-Kara astroblemes. Int Geol Rev 33(5):433–447

    Article  Google Scholar 

  • McCall GJH (2009) The carbonado diamond conundrum. Earth Sci Rev 93:85–91

    Article  Google Scholar 

  • Nazarov MA, Badjukov DD, Alekseev AS (1989) Morphology of the Kara and Ust'Kara impact craters, USSR. Lunar Planet Sci 20:762–763

    Google Scholar 

  • Nazarov MA, Badjukov DD, Alekseev AS (1992) The Kara structure as a possible K/T impact site. Lunar and Planetary Science 23:969–970

    Google Scholar 

  • Németh P, Garvie LAJ, Aoki T, Dubrovinskaia N, Dubrovinsky L, Buseck PR (2014) Lonsdaleite is faulted and twinned cubic diamond and does not exist as a discrete material. Nat Commun 5(5447). https://doi.org/10.1038/ncomms6447

  • Ohfuji H, Irifune T, Litasov KD, Yamashita T, Isobe F, Afanasiev VP et al (2015) Natural occurrence of pure nanopolycrystalline diamond from impact crater. Sci Rep 5:14702

    Article  Google Scholar 

  • Osinski GR (2003) Impact glasses in fallout suevites from the Ries impact structure, Germany: An analytical SEM study. Meteorit Planet Sci 38(11):1641–1667

    Article  Google Scholar 

  • Osinski GR, Bunch TE, Flemming RL, Buitenhuis E, Wittke JH (2015) Impact melt- and projectile-bearing ejecta at Barringer Crater, Arizona. Earth Planet Sci Lett 432:283–292

    Article  Google Scholar 

  • Osinski GR, Grieve RAF, Collins GS, Marion C, Sylvester P (2008) The effect of target lithology on the products of impact melting. Meteorit Planet Sci 43(12):1939–1954

    Article  Google Scholar 

  • Osinski GR, Spray JG (2001) Impact-generated carbonate melts: evidence from the Haughton structure, Canada. Earth Planet Sci Lett 194:17–29

    Article  Google Scholar 

  • Petrovsky VA, Shiryaev AA, Lyutoev VP, Sukharev AE, Martins M (2010) Morphology and defects of diamond grains in carbonado: clues to carbonado genesis. Eur J Mineral 22:35–47

    Article  Google Scholar 

  • Piazolo S, Kaminsky FV, Trimby P, Evans L, Luzin V (2016) Carbonado revisited: Insights from Neutron diffraction, high resolution orientation mapping and numerical simulations. Lithos. https://doi.org/10.1016/j.lithos.2016.09.011

  • Reshetnyak NB, Yezerskiy VA (1990) Combination scattering spectroscopy of natural diamonds. Mineral J 12(5):3–9 (in Russian)

    Google Scholar 

  • Schmitt RT, Larke C, Lingemann CM., Siebenschock M, Stoffer D (2005) Distribution and origin of impact diamonds in the Ries crater, Germany. Geol. Soc. Amer. Spec. Paper, in “Large meteorite impacts III”, Th. Kenkmann, F. Horz, A., ed. Deutsch. p. cm., Special paper 2005; 384: 299–314

  • Shiryaev AA, Fisenko AV, Vlasov II, Semjonova LF, Nagel P, Schuppler S (2011) Spectroscopic study of impurities and associated defects in nanodiamonds from Efremovka (CV3) and Orgueil (CI) meteorites. Geochim Cosmochim Acta 75:3155–3165

    Article  Google Scholar 

  • Shishkin MA, Shkarubo SI, Molchanova EB, Markina NB, Vanshtein BG et al. (2012) State Geological Map. Scale 1:1000000 (3rd editing). South-Karskaya series. R-41 – Amderma. Report. Saint-Petersburg, VSEGEI (in Russian)

  • Shumilova TG, Isaenko SI, Makeev BA, Zubov AA, Shanina SN, Tropnikov YM, Askhabov AM (2018a) Ultrahigh-Pressure Liquation of an Impact Melt. Dokl Earth Sci 480(1):595–598

    Article  Google Scholar 

  • Shumilova TG, Isaenko SI, Ulyashev VV, Kazakov VV, Makeev BA (2018b) After-coal diamonds: an enigmatic type of impact diamonds. Eur J Mineral 30(1). https://doi.org/10.1127/ejm/2018/0030-2715

  • Shumilova T, Kis V, Masaitis V, Isaenko S, Makeev B (2014) Onion-like carbon in impact diamonds from Popigai astrobleme. Eur J Mineral 26:267–277

    Article  Google Scholar 

  • Shumilova TG, Lutoev VP, Isaenko SI, Kovalchuk NS, Makeev BA, Lysiuk AY, Zubov AA (2018c) Spectroscopic features of ultrahigh-pressure impact glasses of the Kara astrobleme. Sci Rep 8:6923

    Article  Google Scholar 

  • Smith JV, Dawson JB (1985) Carbonado: Diamond aggregates from early impacts of crystal rocks? Geology 13(5):342–343

    Article  Google Scholar 

  • Tian H, Schryvers D, Claeys P (2011) Nanodiamonds do not provide unique evidence for a Younger Dryas impact. PNAS 108(1):40–44

    Article  Google Scholar 

  • Trieloff M, Deutsch A, Jessberger EK (1998) The age of the Kara impact structure, Russia. Meteorit Planet Sci 33:361–372

    Article  Google Scholar 

  • Vishnevsky SA (2007) Astroblemes. Nonparel, Novosibirsk (in Russian)

    Google Scholar 

  • Vishnevsky SA (2016) Popigai astrobleme. Acad Press GEO, Novosibirsk (in Russian)

    Google Scholar 

  • Xie H, Yin F, Yu T, Wang JT, Liang C (2014) Mechanism for direct graphite-to-diamond phase transition. Sci Rep 4(5930). https://doi.org/10.1038/srep05930

  • Yelisseyev A, Vins V, Afanasiev V, Rybak A (2017) Effect of electron irradiation on optical absorption of impact diamonds from the Popigai meteorite crater. Diam Relat Mater 79:7–13

    Article  Google Scholar 

  • Yelisseyev A, Meng GS, Afanasyev V, Pokhilenko N, Pustovarov V, Isakova A et al (2013) Optical properties of impact diamonds from the Popigai astrobleme. Diam Relat Mater 37(1):8–16

    Article  Google Scholar 

  • Yezerskiy VA (1986) High pressure polymorphs produced by the shock transformation of coals. Int Geol Rev 28(2):221–228

    Article  Google Scholar 

  • Yushkin NP, Ayu L (2001) Scenarios and basic parameters of Kara impact event. Vestnik IG Komi SC UB RAS 8:14–17 (in Russian)

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank F. Langenhorst, K. Pollok, and D. Harries for help with the SEM/FEIB/TEM studies, V.L. Masaitis for scientific consultations and discussions, the all-Russian field team members for help in the expedition, E.V. Susol for technical assistance; and S.S. Shevchuk, B.A. Makeev for preliminary analytical studies of the impact diamonds. T.Sh. thanks the DAAD foundation for financial support to visit the Jena University. We are grateful to an anonymous reviewer for advice on improving the paper. The work has been supported by the RFBR Project No. 17-05-00516 with partial support of the NIR No. AAAA-A17-117121270036-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatyana Shumilova.

Additional information

Editorial handling: M.A.T.M. Broekmans

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shumilova, T., Isaenko, S. Nanoporous nanocrystalline impact diamonds. Miner Petrol 113, 583–592 (2019). https://doi.org/10.1007/s00710-019-00671-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-019-00671-1

Keywords

  • Nanostructure
  • HRTEM
  • SEM/FIB
  • Carbon materials
  • Nanocrystalline diamond
  • Impact products