Skip to main content

Murashkoite, FeP, a new terrestrial phosphide from pyrometamorphic rocks of the Hatrurim Formation, South Levant

Abstract

Murashkoite, FeP, is a new mineral found in pyrometamorphic rocks of the Hatrurim Formation, South Levant. It is a typical accessory phase in the marbles and paralavas in the southern Negev Desert, Israel and on the Transjordan Plateau, Jordan. Murashkoite occurs as grains and aggregates up to 2 mm closely associated with barringerite, (Fe,Ni)2P, and zuktamrurite, FeP2. The rock-forming minerals include pyroxenes of the diopside-hedenbergite series, anorthite with subordinate gehlenite, tridymite, cristobalite, pyrrhotite, fluorapatite, chromite, magnetite, hematite, merrillite and late hydrothermal carbonates, silicates and sulfates. Macroscopically, murashkoite is yellowish-grey in colour and has a metallic lustre. In reflected light, the mineral is white with a beige tint and it is non-pleochroic. The anisotropy is distinct, from yellow-grey to greyish-blue. Selected reflectance values [RmaxRmin, % (λ, nm)] are: 42.7–40.8 (400), 42.0–40.6 (500), 44.5–43.4 (600), 48.0–47.7 (700). It is brittle. VHN20 = 468 kg mm−2. The holotype material has the chemical composition (electron microprobe): Fe 63.82; Ni 0.88; P 35.56; total 100.26 wt.%. The empirical formula calculated on the basis of 2 apfu is (Fe0.99Ni0.01)1.00P1.00 corresponding to FeP. Murashkoite is orthorhombic, space group Pnma, unit cell parameters refined from the single-crystal data are: a 5.099(2), b 3.251(2), c 5.695(2) Å, V 94.41(8) Å3, Z = 4, Dx = 6.108(5) g cm−3. The crystal structure was solved and refined to R1 = 0.0305 on the basis of 131 unique reflections with I > 2σ(I). The strongest lines of the powder X-ray diffraction pattern [(d, Å) (I, %) (hkl)]: 2.831(75)(002,011); 2.548(22)(200); 2.477(46)(102,111); 1.975(47)(112); 1.895(100)(202,211); 1.779(19)(103); 1.632(45)(013,301,020). The mineral is named in honour of Dr. Mikhail Nikolaevich Murashko (born 1952), for his contributions to the mineralogy of the Hatrurim Formation. Murashkoite is a natural counterpart of synthetic FeP, the compound widely used in heterogeneous catalysis and electrocatalysis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Borodaev YS, Bogdanov YA, Vyal’sov LN (1982) New nickel-free variety of schreibersite Fe3P. Zapiski VMO 111:682–687 (Russian)

    Google Scholar 

  2. Britvin SN, Kolomensky VD, Boldyreva MM, Bogdanova AN, Kretser YL, Boldyreva ON, Rudashevsky NS (1999) Nickelphosphide (Ni,Fe)3P – the nickel analog of schreibersite. Zapiski VMO 64–72(Russian):128

    Google Scholar 

  3. Britvin SN, Rudashevsky NS, Krivovichev SV, Burns PC, Polekhovsky YS (2002) Allabogdanite, (Fe,Ni)2P, a new mineral from the Onello meteorite: the occurrence and crystal structure. Am Mineral 87:1245–1249

    Article  Google Scholar 

  4. Britvin SN, Murasko MN, Vapnik Y, Polekhovsky YS, Krivovichev SV (2015) Earth’s phosphides in Levant and insights into the source of Archaean prebiotc phosphorus. Sci Rep 5:8355

    Article  Google Scholar 

  5. Britvin SN, Krivovichev SV, Armbruster T (2016) Ferromerrillite, Ca9NaFe2+(PO4)7, a new mineral from the Martian meteorites, and some insights into merrillite-tuite transformation in shergottites. Eur J Mineral 28:125–136

    Article  Google Scholar 

  6. Britvin SN, Murashko MN, Vapnik E, Polekhovsky YS, Krivovichev SV (2017) Barringerite Fe2P from pyrometamorphic rocks of the Hatrurim Formation, Israel. Geol Ore Deposit 59:619–625

    Article  Google Scholar 

  7. Britvin SN, Murashko MN, Vapnik E, Polekhovsky YS, Krivovichev SV, Vereshchagin OS, Vlasenko NS, Shilovskikh VV, Zaitsev AN (2018) Zuktamrurite, FeP2, a new mineral, the phosphide analogue of löllingite, FeAs2. Phys Chem Minerals. https://doi.org/10.1007/s00269-018-1008-4

  8. Bruker AXS (2009) Topas 4.2. General profile and structure analysis software for powder diffraction data. Karlsruhe, Germany

  9. Bryant DE, Kee TP (2006) Direct evidence for the availability of reactive, water soluble phosphorus on the early Earth. H-Phosphinic acid from the Nantan meteorite. Chem Commun 2006:2344–2346

  10. Bryant DE, Greenfield D, Walshaw RD, Johnson BRG, Herschy B, Smith C, Pasek MA, Telford R, Scowen I, Munshi T, Edwards HGM, Cousins CR, Crawford IA, Kee TP (2013) Hydrothermal modification of the Sikhote-Alin iron meteorite under low pH geothermal environments. A plausibly prebiotic route to activated phosphorus on the early Earth. Geochim Cosmochim Acta 109:90–112

    Article  Google Scholar 

  11. Buchwald VF (1984) Handbook of Iron meteorites. University of California Press

  12. Burg A, Starinsky A, Bartov Y, Kolodny Y (1992) Geology of the Hatrurim formation (“Mottled Zone”) in the Hatrurim basin. Isr J Earth Sci 40:107–124

    Google Scholar 

  13. Burns S, Hargreaves JSJ, Hunter SM (2007) On the use of methane as a reductant in the synthesis of transition metal phosphides. Catal Commun 8:931–935

    Article  Google Scholar 

  14. Buseck PR (1969) Phosphide from meteorites: barringerite, a new iron-nickel mineral. Science 165:169–171

    Article  Google Scholar 

  15. Callejas JF, McEnaney JM, Read CG, Crompton JC, Biacchi AJ, Popczun EJ, Gordon TR, Lewis NS, Schaak RE (2014) Electrocatalytic and photocatalytic hydrogen production from acidic and neutral-pH aqueous solutions using Iron phosphide nanoparticles. ACS Nano 8:11101–11107

    Article  Google Scholar 

  16. Clarke RS Jr, Goldstein JI (1978) Schreibersite growth and its influence on the metallography of coarse-structured iron meteorites. Smithson Contrib Earth Sci (21):1–80

  17. Cosca MA, Essene EJ, Geissman JW, Simmons WB, Coates DA (1989) Pyrometamorphic rocks associated with naturally burned coal beds, Powder River Basin, Wyoming. Am Mineral 74:85–100

    Google Scholar 

  18. Dera P, Lavina B, Borkowski LA, Prakapenka VB, Sutton SR, Rivers ML, Downs RT, Boctor NZ, Prewitt CT (2008) High-pressure polymorphism of Fe2P and its implications for meteorites and Earth’s core. Geophys Res Lett 35:L10301

    Article  Google Scholar 

  19. Dera P, Lazarz JD, Lavina B (2011) Pressure-induced development of bonding in NiAs type compounds and polymorphism of NiP. J Solid State Chem 184:1997–2003

    Article  Google Scholar 

  20. Dera P, Nisar J, Ahuja R, Tkachev S, Prakapenka VB (2013) New type of possible hige-pressure polymorphism in NiAs minerals in planetary cores. Phys Chem Miner 40:183–193

    Article  Google Scholar 

  21. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JA, Puschmann H (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 42:339–341

    Article  Google Scholar 

  22. Fiebig J, Woodland AB, Spangenberg J, Oschmann W (2007) Natural evidence for rapid abiogenic hydrothermal generation of CH4. Geochim Cosmochim Acta 71:3028–3039

    Article  Google Scholar 

  23. Fleurance S, Cuney M, Malartre F, Reyx J (2013) Origin of the extreme polymetallic enrichment (Cd, Cr, Mo, Ni, U, V, Zn) of the Late Cretaceous–Early Tertiary Belqa Group, central Jordan. Palaeogeogr Palaeoclimatol Palaeoecol 369:201–219

    Article  Google Scholar 

  24. Galuskin EV, Galuskina IO, Kusz J, Armbruster T, Marzec KM, Dzierzanowski P, Murashko M (2014) Vapnikite Ca3UO6 a new double-perovskite mineral from pyrometamorphic larnite rocks of the Jabel Harmun, Palestinian Autonomy, Israel. Mineral Mag 78:571–581

    Article  Google Scholar 

  25. Galuskin EV, Galuskina IO, Gfeller F, Kruger B, Kusz J, Vapnik Y, Dulski M, Dzierzanowski P (2016) Silicocarnotite, Ca5[(SiO4)(PO4)](PO4), a new ,,old” mineral from the Negev Desert, Israel, and the ternesitesilicocarnotite solid solution: indicators of high-temperature alteration of pyrometamorphic rocks of the Hatrurim Complex, Southern Levant. Eur J Mineral 28:105–123

  26. Galuskin EV, Gfeller F, Galuskina IO, Armbruster T, Krzatala A, Vapnik Y, Kusz J, Dulski M, Gardocki M, Gurbanov AG, Dzierzanowski P (2017) New minerals with a modular structure derived from hatrurite from the pyrometamorphic rocks. Part III. Gazeevite, BaCa6(SiO4)2(SO4)2O, from Israel and the Palestine Autonomy, South Levant, and from South Ossetia, Greater Caucasus. Mineral Mag 81:499–514

    Article  Google Scholar 

  27. Galuskina IO, Vapnik Y, Lazic B, Armbruster T, Murashko M, Galuskin EV (2014) Harmunite CaFe2O4: a new mineral from the Jabel Harmun, West Bank, Palestinian autonomy, Israel. Am Mineral 99:965–975

    Article  Google Scholar 

  28. Geller YI, Burg A, Halicz L, Kolodny Y (2012) System closure during the combustion metamorphic “Mottled Zone” event, Israel. Chem Geol 334:25–36

    Article  Google Scholar 

  29. Gfeller F, Widmer R, Krüger B, Galuskin EV, Galuskina IO, Armbruster T (2015) The crystal structure of flamite and its relation to Ca2SiO4 polymorphs and nagelschmidtite. Eur J Mineral 27:755–769

    Article  Google Scholar 

  30. Grapes R (2006) Pyrometamorphism. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  31. Gross S (1977) The mineralogy of the Hatrurim Formation, Israel. Bull Geol Surv Israel 70:1–80

    Google Scholar 

  32. Gu T, Fei Y, Wu X, Qin S (2016) Phase stabilities and spin transitions of Fe3(S1-xPx) at high pressure and its implications in meteorites. Am Mineral 101:205–210

    Article  Google Scholar 

  33. Gull M, Mojica MA, Fernandez FM, Gaul DA, Orlando TM, Liotta CL, Pasek MA (2015) Nucleoside phosphorylation be the mineral schreibersite. Sci Rep-UK 5:17198

    Article  Google Scholar 

  34. Gur D, Steinitz G, Kolodny Y, Starinsky A, McWilliams M (1995) 40Ar/39Ar dating of combustion metamorphism (“Mottled Zone”, Israel). Chem Geol 122:171–184

    Article  Google Scholar 

  35. Harris DC (1974) Ruthenarsenite and iridarsenite, two new minerals from the territory of Papua and New Guinea and associated irarsite, laurite and cubic iron-bearing platinum. Can Mineral 12:280–284

    Google Scholar 

  36. Horita J, Berndt ME (1999) Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Science 285:1055–1057

    Article  Google Scholar 

  37. Horsman GP, Zechel DL (2017) Phosphonate biochemistry. Chem Rev 117:5704–5783

    Article  Google Scholar 

  38. Ivanov AV, Zolensky ME, Saito A, Ohsumi K, Yang SV, Kononkova NN, Mikouchi T (2000) Florenskyite, FeTiP, a new phosphide from the Kaidun meteorite. Am Mineral 85:1082–1086

    Article  Google Scholar 

  39. Jiang P, Liu Q, Liang Y, Tian J, Asiri AM, Sun X (2014) A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire Array as the active phase. Angew Chem Int Ed 53:12855–12859

    Article  Google Scholar 

  40. Juroszek R, Krüger H, Galuskina I, Krüger B, Jeżak L, Ternes B, Wojdyla J, Krzykawski T, Pautov L, Galuskin E (2018) Sharyginite, Ca3TiFe2O8, a new mineral from the Bellerberg volcano, Germany. Minerals 8:308

    Article  Google Scholar 

  41. Kawamura K, Maurel M-C (2017) Walking over 4 Gya: chemical evolution from photochemistry to mineral and organic chemistries leading to an RNA world. Orig Life Evol Biosph 47:281–296

    Article  Google Scholar 

  42. Khesin B, Vapnik Y, Itkis S (2010) Case history. Geophysical evidence of deep hydrocarbon flow in Mottled Zone areas, Dead Sea Transform zone. Geophysics 75:B91–B101

    Article  Google Scholar 

  43. Kitadai N, Maruyama S (2018) Origins of building blocks of life: a review. Geosci Front 9:1117–1153

    Article  Google Scholar 

  44. Kolodny Y, Burg A, Geller YI, Halicz L, Zakon Y (2014) Veins in the combusted metamorphic rocks, Israel; weathering or a retrograde event? Chem Geol 385:140–155

    Article  Google Scholar 

  45. La Cruz NL, Qasim D, Abbott-Lyon H, Pirim C, McKee AD, Orlando T, Gull M, Lindsay D, Pasek MA (2016) The evolution of the surface of the mineral schreibersite in prebiotic chemistry. Phys Chem Chem Phys 18:20160–20167

    Article  Google Scholar 

  46. Larsson E (1965) An X-ray investigation of the Ni-P system and the crystal structures of NiP and NiP2. Ark Kemi 23:335–356

    Google Scholar 

  47. Lazoryak BI, Belik AA, Kotov RN, Leonidov IA, Mitberg EB, Karelina VV, Kellerman DG, Stefanovich SY, Avetisov AK (2003) Reduction and Re-? Oxidation behavior of calcium iron phosphate, Ca9Fe(PO4)7. Chem Mater 15:625–631

    Article  Google Scholar 

  48. Lyman PS, Prewitt CT (1984) Room- and high-pressure crystal chemistry of CoAs and FeAs. Acta Cryst B 40:14–20

    Article  Google Scholar 

  49. Ma C, Beckett JR, Rossman GR (2014) Monipite, MoNiP, a new phosphide mineral in a Ca-Al-rich inclusion from the Allende meteorite. Am Mineral 99:198–205

    Article  Google Scholar 

  50. Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, van de Streek J (2006) Mercury: visualization and analysis of crystal structures. J Appl Crystallogr 39:453–457

    Article  Google Scholar 

  51. Makovicky E (2006) Crystal structures of sulfides and other chalcogenides. Rev Mineral Geochem 61:7–125

    Article  Google Scholar 

  52. Murashko MN, Chukanov NV, Mukhanova AA, Vapnik E, Britvin SN, Krivovichev SV, Polekhovskii YS, Ivakin YD (2010) Barioferrite BaFe3+12O19 – a new magnetoplumbite-group mineral from Hatrurim formation, Israel. Zapiski VMO 139:22–31 (Russian)

    Google Scholar 

  53. Nishanbaev TP, Rochev AV, Kotlyarov VA (2002) Iron phosphides from the burned coal dumps of Chelyabinsk coal basin. Uralsky Geol J 25(1):105–114 (Russian)

    Google Scholar 

  54. Novikov I, Vapnik Y, Safonova I (2013) Mud volcano origin of the Mottled Zone, south Levant. Geosci Front 4:597–619

    Article  Google Scholar 

  55. Oen IS, Burke EAJ, Kieft C, Westerhof AB (1972) Westerveldite (Fe,Ni,Co) As, a new mineral from La Gallega, Spain. Am Mineral 57:354–363

    Google Scholar 

  56. Pasek MA (2017) Schreibersite on the early Earth: scenarios for prebiotic phosphorylation. Geosci Front 8:329–335

    Article  Google Scholar 

  57. Pasek M, Block K (2009) Lightning-induced reduction of phosphorus oxidation state. Nat Geosci 2:553–556

    Article  Google Scholar 

  58. Pasek MA, Dworkin JP, Lauretta DS (2007) A radical pathway for organic phosphorylation during schreibersite corrosion with implications for the origin of life. Geochim Cosmochim Acta 71:1721–1736

    Article  Google Scholar 

  59. Pasek MA, Gull M, Herschy B (2017) Phosphorylation on the early earth. Chem Geol 475:149–170

    Article  Google Scholar 

  60. Pedersen AK (1981) Armalcolite-bearing Fe-Ti oxide assemblages in graphite equilibrated salic volcanic rocks with native iron from Disko, Central West Greenland. Contrib Mineral Petrol 77:307–324

    Article  Google Scholar 

  61. Pirim C, Pasek MA, Sokolov DA, Sidorov AN, Gann RD, Orlando TM (2014) Investigation of schreibersite and intrinsic oxidation products from Sikhote-Alin, Seymchan, and Odessa meteorites and Fe3P and Fe2NiP synthetic surrogates. Geochim Cosmochim Acta 140:259–274

    Article  Google Scholar 

  62. Plyashkevich AA, Minyuk PS, Subbotnikova TV, Alshevsky AV (2016) Newly formed minerals of the Fe-P-S system in Kolyma fulgurite. Dokl Earth Sci 467(2):380–383

    Article  Google Scholar 

  63. Pouchou JL, Pichoir F (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. In: Heinrich KFJ, Newbury DE, Eds., Electron Probe Quantitation, New York

  64. Pratesi G, Bindi L, Moggi-Cecci V (2006) Icosahedral coordination of phosphorus in the crystal structure of melliniite, a new phosphide mineral from the northwest Africa 1054 acapulcoite. Am Mineral 91:451–454

    Article  Google Scholar 

  65. Prins R, Bussell ME (2012) Metal phosphides: preparation, characterization and catalytic reactivity. Catal Lett 142:1413–1436

    Article  Google Scholar 

  66. Rudashevsky NS, Motshalov AG, Trubkin NV, Shumskaya NM, Shkursky VI, Evstigneeva TL (1985) Cherepanovite RhAs – a new mineral. Zapiski VMO 114:464–469 (Russian)

    Google Scholar 

  67. Scheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Cryst C71:3–8

    Google Scholar 

  68. Schonberg N (1954) An X-ray investigation of transition metal phosphides. Acta Chem Scand 3:226–239

    Article  Google Scholar 

  69. Scott HP, Huggins S, Frank MR, Maglio SJ, Martin CD, MengY SJ, Williams Q (2007) Equation of state and high-pressure stability of Fe3P-schreibersite: implications for phosphorus storage in planetary cores. Geophys Res Lett 34:L06302

    Article  Google Scholar 

  70. Seryotkin YV, Sokol EV, Kokh SN (2012) Natural pseudowollastonite: crystal structure, associated minerals, geological context. Lithos 134–135:75–90

    Article  Google Scholar 

  71. Sharygin VV, Vapnik Y, Sokol EV, Kamenetsky VS, Shagam R (2006) Melt inclusions in minerals of schorlomite-rich veins of the Hatrurim Basin, Israel: composition and homogenization temperatures. ACROFII program with abstracts, Nanjing University PH. China:189–192

  72. Sharygin VV, Lazic B, Armbruster TM, Murashko MN, Wirth R, Galuskina IO, Galuskin EV, Vapnik Y, Britvin SN, Logvinova AM (2013) Shulamitite Ca3TiFe3+AlO8 – a new perovskite-related mineral from Hatrurim Basin, Israel. Eur J Mineral 25:97–111

    Article  Google Scholar 

  73. Shaw CSJ (2009) Caught in the act – the first few hours of xenolith assimilation preserved in lavas of the Rockeskyllerkopf volcano, West Eifel, Germany. Lithos 112:511–523

    Article  Google Scholar 

  74. Shemesh A, Kolodny Y, Luz B (1983) Oxygen isotope variations in phosphate of biogenic apatites, II. Phosphorite rocks. Earth Planet Sci Lett 64:405–416

    Article  Google Scholar 

  75. Sokol EV, Maksimova NV, Nigmatulina EN, Sharygin VV, Kalugin VM (2005) Combustion metamorphism. Publishing House of the SB RAS–Novosibirsk, 284 p (Russian)

  76. Sokol EV, Novikov IS, Vapnik Y, Sharygin VV (2007) Gas fire from mud volcanoes as a trigger for the appearance of high-temperature pyrometamorphic rocks of the Hatrurim Formation (Dead Sea area). Dokl Earth Sci 413A:474–480

    Article  Google Scholar 

  77. Sokol E, Novikov I, Zateeva S, Vapnik Y, Shagam R, Kozmenko O (2010) Combustion metamorphic rocks as indicators of fossil mud volcanism: new implications for the origin of the Mottled Zone, Dead Sea rift area. Basin Res 22:414–438

    Article  Google Scholar 

  78. Sokol EV, Seryotkin YV, Kokh SN, Vapnik Y, Nigmatulina EN, Goryainov SV, Belogub EV, Sharygin VV (2015) Flamite, (Ca,Na,K)2(Si,P)O4, a new mineral from ultrahightemperature combustion metamorphic rocks, Hatrurim Basin, Negev Desert, Israel. Mineral Mag 79:583–596

    Article  Google Scholar 

  79. Stoe & Cie (2006). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany

  80. Tremel W, Hoffmann R, Silvestre J (1986) Transitions between NiAs and MnP type phases: an electronically driven distortion of triangular (36) nets. J Am Chem Soc 108:5174–5187

    Article  Google Scholar 

  81. Vapnik Y, Sharygin V, Sokol E, Shagam R (2007) Paralavas in a combustion metamorphic complex, Hatrurim Basin, Israel. GSA Rev Eng Geol XVIII:133–153

    Google Scholar 

  82. Vapnik Y, Palchika V, Galuskina I, Banasik K, Krzykawski T (2018) Mineralogy, chemistry and rock mechanic parameters of katoite-bearing rock from the Hatrurim Basin, Israel. J. Afr. Earth Sci 147:322–330

    Article  Google Scholar 

  83. Weber D, Bischoff A (1994) Grossite (CaAl4O7) - a rare phase in terrestrial rocks and meteorites. Eur J Mineral 6:591–594

    Article  Google Scholar 

  84. Yang JS, Bai WJ, Rong H, Zhang ZM, Xu ZQ, Fang QS, Yang BG, Li TF, Ren YF, Chen SY, Hu J-Z, Su JF, Mao HK (2005) Discovery of Fe2P alloy in garnet peridotite from the Chinese continental scientific drilling project (CCSD) main hole. Acta Petrol Sin 21:271–276

    Google Scholar 

  85. Zolensky M, Gounelle M, Mikouchi T, Ohsumi K, Le L, Hagiya K, Tachikawa O (2008) Andreyivanovite: a second new phosphide from the Kaidun meteorite. Am Mineral 93:1295–1299

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Russian Science Foundation (grant 18-17-00079). The authors thank the Resource Center of X-ray diffraction studies and “Geomodel” Resource Centre of Saint-Petersburg State University for providing instrumental and computational resources. The authors gratefully acknowledge Dr. Chris Stanley and Dr. Evgeny Galuskin for the helpful comments and discussion of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sergey N. Britvin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Editorial handling: M.A.T.M. Broekmans

Electronic supplementary material

ESM 1

(CIF 57 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Britvin, S.N., Vapnik, Y., Polekhovsky, Y.S. et al. Murashkoite, FeP, a new terrestrial phosphide from pyrometamorphic rocks of the Hatrurim Formation, South Levant. Miner Petrol 113, 237–248 (2019). https://doi.org/10.1007/s00710-018-0647-y

Download citation

Keywords

  • Iron phosphide
  • FeP
  • New mineral
  • MnP structure type, murashkoite, barringerite
  • Fe-Ni-P system
  • Pyrometamorphism
  • Meteorite
  • Coal piles
  • Phosphorylation