Advertisement

Mineralogy and Petrology

, Volume 113, Issue 2, pp 217–228 | Cite as

Rare aluminium phosphates and sulphates (APS) and clay mineral assemblages in silicified hydraulic breccia hosted by a Permian granite (Velence Mts., Hungary) as indicators of a high sulfidation type epithermal system

  • Ivett KovácsEmail author
  • Tibor Németh
  • Gabriella B. Kiss
  • Viktória K. Kis
  • Ágoston Tóth
  • Zsolt Benkó
Original Paper
  • 147 Downloads

Abstract

Uncommon micrometer-sized aluminium phosphates and sulphates of the alunite supergroup (APS minerals) associated with clay minerals were found in a polymictic Permian granite hosted hydrothermal breccia in the Velence Mts. (Hungary). The mineral assemblage was studied with TEM, XRD, EMPA and FTIR with the aim of revealing the formation conditions and the genetic link to the hydrothermal processes that affected the granite host. Two breccia types were identified in the granite. In a polymictic, strongly silicified breccia type zoned plumbogummite was found in association with rolled tube-shaped halloysite and kaolinite. Calcium, barium and lead zonation of the plumbogummite and the Cl and S contents of the halloysite indicate the hypogene origin of this assemblage. Kaolinite, halloysite and plumbogummite form under acidic conditions at temperatures ≤150 °C in hydrothermal systems. APS minerals belonging to the woodhouseite solid solution series (s.s.s.) were detected in the matrix of argillic polymictic breccia beside the alunite in a kaolinite/dickite, illite rich matrix. Alunite and woodhouseite form under acidic conditions in hydrothermal systems. Kaolinite/dickite and illite also suggest acidic conditions and temperatures of ≥240 °C. The close vicinity of the studied breccias to hydrothermal centres hosted by Palaeogene andesitic volcanic series, the strike of the studied breccia veins as well as the similarities in the mineral assemblages imply that the brecciation is spatially and genetically related to the high-sulfidation epithermal systems of the Palaeogene magmatic-hydrothermal activity. In our model, strongly acidic and hot hydrothermal fluids entered into the granite along E-W trending faults that resulted in silicification, brecciation and the formation of APS minerals in association with clay mineral assemblages.

Keywords

Clay minerals Aluminium-phosphate-sulfate minerals Plumbogummite HS epithermal system Velence Mts 

Notes

Acknowledgements

Authors Tibor Németh, Zsolt Benkó, and Viktória Kovács Kis were supported by the Bolyai Scholarship from the Hungarian Academy of Sciences. The research was supported by the European Union and the State of Hungary, co-financed by the European Regional Development Fund in the project of GINOP-2.3.2.-15-2016-00009 ‘ICER’. We are grateful to Iain Coulthard for the careful review of the final version of the manuscript.

References

  1. Bajnóczi B (2003) A Velencei-hegység paleogén hidrotermás folyamatai (translated title: Palaeogene hydrothermal processes in the Velence Mts.) PhD thesis, Eötvös Loránd UniversityGoogle Scholar
  2. Bajnóczi B, Molnár F, Maeda K, Nagy G, Vennemann T (2002) Mineralogy and genesis of primary alunites from epithermal systems of Hungary. Acta Geol Hung 45(1):101–118CrossRefGoogle Scholar
  3. Balogh K, Árva-Sós E, Buda G (1983) Chronology of granitoid and metamorphic rocks of Transdanubia (Hungary). Annales Inst Geol Geofiz 61:359–364Google Scholar
  4. Beaufort D, Cassagnabere A, Petit S, Lanson B, Berger G, Lacharpagne JC, Johansen H (1998) Kaolinite-to dickite reaction in sandstone reservoirs. Clay Miner 33:297–316CrossRefGoogle Scholar
  5. Benedek K (2002) Palaeogene igneous activity along the eastern most segment of the Periadriatic-Balaton lineament. Acta Geol Hung 45(4):359–371CrossRefGoogle Scholar
  6. Benedek K, Pécskay Z, Cs S, Jósfai J, Németh T (2004) Palaeogene igneous rocks in the Zala basin (Western Hungary): link to the Palaeogene magmatic activity along the Periadriatic lineament. Geol Carpath 55(1):43–50Google Scholar
  7. Benkó Zs, Molnár F, Lespinasse M (2008) Application of studies on fluid inclusion planes and fracture systems in reconstruction of fracturing history of granitoid rocks I.: introduction to methods and implication for fluid-mobilization events in the Velence Mts. Bull Hung Geol Soc 138(2):445–468Google Scholar
  8. Benkó Z, Molnár F, Pécskay Z, Németh T, Lespinasse M (2012) The interplay of the Paleogene magmatic-hydrothermal fluid flow on a Variscan granite intrusion: age and formation of the barite vein at Sukoró, Velence Mts, W-Hungary. Bull Hung Geol Soc 142(1):45–58Google Scholar
  9. Benkó Z, Molnár F, Lespinasse M, Váczi T (2014) Evidence for exhumation of a granite intrusion in a regional extensional stress regime based on coupled microstructural and fluid inclusion plane studies – an example from the Velence Mts., Hungary. Geol Carpath 65(3):177–194CrossRefGoogle Scholar
  10. Bergaya F, Lagaly G, Vayer M (2006) Cation and anion exchange – in: Bergaya F, Theng BKG, Lagaly G (eds) handbook of clay science. Elsevier, New York, pp 979–1001Google Scholar
  11. Breitinger DK, Brehm G, Mohr J, Colognesi D, Parker SF, Stolle A, Pimpl TH, Schwab RG (2006) Vibrational spectra of synthetic crandallite-type minerals – optical and inelastic neutron scattering spectra. J Raman Spectrosc 37:208–216CrossRefGoogle Scholar
  12. Bruno TJ (1999) Sampling accessories for infrared spectrometry. Appl Spectrosc Rev 34:91–120CrossRefGoogle Scholar
  13. Buda G (1985) Origin of collision-type Variscian granitoids in Hungary, West Carpathian and Central Bohemian Pluton. PhD thesis, Eötvös Loránd UniversityGoogle Scholar
  14. Buda G (1993) Enclaves and fayalite bearing pegmatitic “nests” in the upper part of the granite intrusion of the Velence Mts. Hungary. Geol Carpath 44(3):143–153Google Scholar
  15. Buda G, Koller F, Ulrych J (2004) Petrochemistry of Variscan granitoids of Central Europe: correlation of Variscan granitoids of the Tisia and Pelsonia terranes with granitoids of the Moldanubicum, Western Carpathians and southern Alps. A review: part I. Acta Geol Hung 47(2–3):117–138CrossRefGoogle Scholar
  16. Chukanov NV (2014) Infrared spectra of mineral species. Vol. 1. Springer, BerlinCrossRefGoogle Scholar
  17. Cliff G, Lorimer GW (1975) The quantitative analysis of thin specimens. J Microsc 103:203–207CrossRefGoogle Scholar
  18. Csontos L, Vörös A (2004) Mesozoic plate tectonic reconstruction of the Carpathian region. Paleogeogr Paleoclimatol Paleoecol 210:1–56CrossRefGoogle Scholar
  19. Darida-Tichy M (1987) Paleogene andesite volcanism and associated rock alteration (Velence Mountains, Hungary). Geol Carpath 38(1):19–34Google Scholar
  20. Dill HG (2001) The geology of aluminium phosphates and sulphates of the alunite group minerals: a review. Earth Sci Rev 53:35–93CrossRefGoogle Scholar
  21. Dill HG (2003) A comparative study of APS minerals of the Pacific rim fold belts with special reference to south American argillaceous deposits. J S Am Earth Sci 16:301–320CrossRefGoogle Scholar
  22. Dill HG, Bosse HR, Henning KH, Fricke A, Ahrend H (1997) Mineralogical and chemical variations in hypogene and supergene kaolin deposits in a mobile fold belt—the Central Andes of northwestern Peru. Mineral Deposita 32:149–163CrossRefGoogle Scholar
  23. Eberl D, Hower J (1975) Kaolinite synthesis: the role of the Si/Al and (alkali)/(H+) ratio in the hydrothermal systems. Clay a Clays Min 23:301–309CrossRefGoogle Scholar
  24. Földvári A (1947) A molibdén velencei-hegységi előfordulásának teleptani viszonyai. (translated title: Postvolcanic molybdenum-traces in the Velence Mts.). Annu Rep Hung Geol Inst 9(1–6):39–58Google Scholar
  25. Hedenquist JW, Arribas AR, Gonzales-Urien E (2000) Exploration for gold deposits. In: Hagemann SG, Brown PE (eds) Reviews in Economic Geology, vol 13. Gold in 2000, Society of Economic Geologists, Littleton CO, pp 245–277Google Scholar
  26. Horváth I, Ódor L, Daridáné Tichy M, Dudko A, Ó Kovács L (1987) A Velencei-hegység- Balatonfő környékének ércprognózisa. (translated title: Metallogenic survey of the Velence Mountains- Balatonfő area) MS MGSZ Adattár, BudapestGoogle Scholar
  27. Horváth I, Daridáné-Tichy M, Dudko A, Gyalog L, Ódor L (2004) Geology of the Velence Hills and the Balatonfő. Explanatory Book of the Geological Map of the Velence Hills. Geol Inst Hung, BudapestGoogle Scholar
  28. Humphries DW (1992) The preparation of thin sections of rocks, minerals and ceramics. Microscopy Handbooks (24), Royal Microscopical Society, Oxford Science Publications, OxfordGoogle Scholar
  29. Inoue A (1995) Formation of clay minerals in hydrothermal environments. In: Velde B (ed) Origin and mineralogy of clays. Springer, Berlin, pp 220–246Google Scholar
  30. Jantsky B (1957) Geology of the Velence Mts. Geol Hung, BudapestGoogle Scholar
  31. Jantsky B (1966) Velencei-hegység. (translated title: Velence Mountains). In: Barabás K, Bartkó L, Cseh Németh J (eds) Ásványtelepeink földtana. Nyersanyaglelőhelyeink. Műszaki Kiadó, Budapest, pp 217–232Google Scholar
  32. Kovács I, Csontos L, Cs S, Bali E, Gy F, Benedek K, Zajacz Z (2007) Paleogene – early Miocene igneous rocks and geodynamics of the alpine-Carpathian-Pannonian-Dinaric region: an integrated approach. Geol Soc Am Spec Pap 418:93–112Google Scholar
  33. Kubovics I (1958) Hydrothermal mineralization of the Meleg Hill. Bull of the Hung Geol Soc 88(3):299–314Google Scholar
  34. Kyne R, Hollings P, Jansen NH, Cooke DR (2013) Supergene and hypogene halloysite in a porphyry-epithermal environment at Cerro la Mina, Chiapas, Mexico. Econ Geol 108:1147–1161CrossRefGoogle Scholar
  35. Molnár F (1996) Fluid inclusion characteristics of Variscan and alpine metallogeny of the Velence Mts., W Hungary. Plate Tectonic Aspects of the Alpine Metallogeny in the Carpatho-Balkan Region Proceedings of the Annual Meeting-Sofia, 1996 UNESCO-IGCP Project No 356(/2):29–44Google Scholar
  36. Molnár F (1997) Contributions to the genesis of molybdenite in the Velence Mts.: mineralogical and fluid inclusion studies on the mineralization of the Retezi Adit Bull Hung. Geol Soc 127(1–2):1–17Google Scholar
  37. Molnár F (2004) Characteristics of Variscan and Palaeogene fluid mobilization and ore forming processes in the Velence Mts., Hungary: a comparative fluid inclusion study. Acta Min-Petr 45(1):55–63Google Scholar
  38. Molnár F, Török K, Jones P (1995) Crystallization conditions of pegmatites from the Velence Mts., Western Hungary, on the basis of thermobarometric studies. Acta Geol Hung 38(1):57–80Google Scholar
  39. Molnár F, Bajnóczi B, Pécskay Z, Prohászka A, Benkó Zs (2010) Hydrothermal alteration, fluid inclusions and stable isotopes (O,H) in a porphyry and related epithermal system of the Palaeogene volcanic belt of the Alp-Carpathian Orogen (Velence Mts. W-Hungary). In: Zaharia L, Kis A, Topa B, Papp G, Weiszburg TG (eds) 20th general meeting of the international mineralogical association. IMA2010, Budapest, pp 289Google Scholar
  40. Nemecz E (1973) Agyagásványok (translated title: Clay minerals). Academic Press, BudapestGoogle Scholar
  41. Palache C, Berman H, Frondel C (1951) Dana’s system of mineralogy, vol 2. Wiley, New YorkGoogle Scholar
  42. Reyes AG (1990) Petrology of Philippine geothermal systems and the application of alteration mineralogy to their assessment. J Volcanol Geotherm Res 43:279–309CrossRefGoogle Scholar
  43. Serna CJ, Cortina CP, Ramos JVG (1986) Infrared and Raman study of alunite-jarosite compounds. Spectrochim Acta 42A(6):729–734CrossRefGoogle Scholar
  44. Sillitoe RH, Hedenquist JW (2003) Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious metal deposits. SEG Spec Publ 10:315–343Google Scholar
  45. Stoffregen RE, Alpers CN (1987) Woodhouseite and svanbergite in hydrothermal ore deposits: products of apatite destruction during advanced argillic alteration. Can Mineral 25(2):201–211Google Scholar
  46. Stoffregen RE, Cygan GL (1990) An experimental study of Na-K exchange between alunite and acqueos sulphate solution. Am Mineral 75:209–220Google Scholar
  47. Stuart B (2004) Infrared spectroscopy: fundamentals and applications. Wiley, New YorkCrossRefGoogle Scholar
  48. Szakáll S, Dill HG, Melcher F (2007) Hinsdalit, egy új APS-ásvány a Velencei-hegységből (Napad, Meleg-hegy) translated title: Hinsdalite, a new APS mineral from Meleg Hill, Nadap (Velence Mountains, Hungary). Acta GGM Debrecina 2:33–36Google Scholar
  49. Tóth Á (2017) A meleg-hegyi hidrotermás breccsa vizsgálata. (translated title: Investigation of hydrothermal breccia from Meleg Hill) Msc Thesis. Eötvös Loránd UniversityGoogle Scholar
  50. Uher P, Broska I (1994) The Velence Mts granitic rocks: geochemistry, mineralogy and comparison to Variscan Western Carpathian granitoids. Acta Geol Hung 37(1–2):45–66Google Scholar
  51. Vendl A (1914) A Velencei-hegység geológiai és petrográfiai viszonyai (translated title: Geological and petrographic aspects of the Velence Mountains). Annu Rep Hung Geol Inst 22(/1):1–170Google Scholar
  52. Watanabe Y, Hedenquist JW (2001) Mineralogical and stable isotope zonation at the surface over the El Salvador porphyry copper deposit, Chile. Econ Geol 96:1775–1797Google Scholar
  53. White NC, Hedenquist JW (1990) Epithermal environments and styles of mineralization: variations and their causes, and guidelines for exploration. J Geochem Eplor 36:445–474CrossRefGoogle Scholar
  54. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187CrossRefGoogle Scholar
  55. Zajzon N, Szentpéteri K, Nagy G (2004) Plumbogummite from Szűzvár mine, Pátka (Velence Mountains, Hungary): first occurrence in Hungary. Acta Min-Petr 45(1):107–112Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Geological and Geochemical ResearchHungarian Academy of SciencesBudapestHungary
  2. 2.Department of Mineralogy, Faculty of SciencesEötvös Loránd UniversityBudapestHungary
  3. 3.Institute of Technical Physics and Materials Science, Centre for Energy ResearchHungarian Academy of SciencesBudapestHungary
  4. 4.Department of Petrology and Geochemistry, Faculty of SciencesEötvös Loránd UniversityBudapestHungary
  5. 5.Institute for Nuclear ResearchHungarian Academy of SciencesDebrecenHungary

Personalised recommendations