Skip to main content

Advertisement

Log in

Boninite volcanic rocks from the mélange of NW Dinaric-Vardar ophiolite zone (Mt. Medvednica, Croatia) – record of Middle to Late Jurassic arc-forearc system in the Tethyan subduction factory

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

In the Late Jurassic to Early Cretaceous ophiolite mélange from the Mt. Medvednica (Vardar Ocean) blocks of boninite rocks have been documented. They emerge as massive lavas made of augite, spinel, albite and secondary hydrous silicates (e.g., chlorite, epidote, prehnite, and pumpellyite). An established crystallization sequence (spinel→clinopyroxene→plagioclase±Fe-Ti oxides) was found to be typical for the boninite series from the suprasubduction zones (SSZ). Augite crystallization temperatures and low pressures of ~1048 to 1260 °C and ~0.24 to 0.77 GPa, respectively, delineated the SSZ mantle wedge as a plausible source of boninite parental lavas. Their whole-rock geochemistry is characterised by low Ti, P2O5, Zr, Y, high-silica, and high Mg# and Cr# values. Low and U-shaped REE profiles are consistent with the negative Nb-Ta, P and Ti anomalies indicative for SSZ. Thorium and LILE enrichment, and very low initial Nd-isotopic values (εNd(T = 150 Ma) + 0.49 to +1.27) act as vestiges of mantle-wedge metasomatism. The mantle source was likely depleted by the MORB and IAT melt extraction and was contemporaneously affected by subduction fluids, prior to the large-scale adiabatic melting of the mantle hanging wall. This eventually gave rise to boninite lavas and an ultra-refractory harzburgite residiuum. The genesis of boninites is related to the Tithonian mature forearc setting that evolved from an intra-oceanic, Callovian to Oxfordian, island-arc environment. The Mt. Medvednica boninite rocks stand for the youngest SSZ-related Jurassic oceanic crust from the NW segment of the Dinaric-Vardar Tethys that are nowadays obducted onto the passive margins of Adria. Taking into account the existence of similar rocks in the ophiolite zones of Serbia, Albania and Greece, the boninites of Mt. Medvednica strongly favours the single Tethyan oceanic basin that existed in this part of Europe during the Late Jurassic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Babić LJ, Hochuli PA, Zupanić J (2002) The Jurassic ophiolitic mélange in the NE Dinarides: dating, internal structure and geotectonic implications. Eclogae Geol Helv 95:263–257

    Google Scholar 

  • Bach W, Peucker-Ehrenbrink B, Hart SR, Blusztajn J (2003) Geochemistry of hydrotermally altered oceanic crust: DSDP/ODP hole 504B – implications for seawater-crust excange budgets and Sr- and Pb-isotopic evolution of the mantle. Geochem Geophys Geosyst 4:8904

    Google Scholar 

  • Basch O (1981) Basic geological map of SFRJ 1:100.000. Sheet Ivanić Grad (L 38-81), Institut za geološka istraživanja Zagreb - Savezni geološki zavod Beograd (in Croatian)

  • Bébien J, Dimo-Lahitte A, Vergély P, Insergueix-Filippi D, Dupeyrat L (2000) Albanian ophiolites. I - Magmatic and metamorphic processes associated with the initiation of a subduction. Ofioliti 25:39–45

    Google Scholar 

  • Beccaluva L, Serri G (1988) Boninitic and low-Ti subduction-related lavas from intra-oceanic arc-back-arc systems and low-Ti ophiolites: a reappraisal of their petrogenesis and original tectonic setting. Tectonophysics 146:291–315

    Google Scholar 

  • Beccaluva L, Ohnenstetter D, Ohnenstetter M, Paupy M (1978) The Vourinos ophiolitic complex has been created in an island arc setting: petrographic and geochemical evidences. Ofioliti 3:62–63

    Google Scholar 

  • Beccaluva L, Piccardo GB, Serri G (1980) Petrology of northern Apennine ophiolites and comparision with other Tethyan ophiolites. In: Panayiotou A (ed) Ophiolites, Proceedings of International Ophiolite Symposium, Cyprus 1979. Geological Survey Department, Nicosia, pp 314–331

  • Beccaluva L, Di Girolamo P, Macciota G, Morra V (1983) Magma affinities and fractionation trends in opholites. Ofioliti 8:307–324

    Google Scholar 

  • Beccaluva L, Macciotta G, Piccardo GB, Zeda O (1989) Clinopyroxene composition of ophiolite basalts as petrogenetic indicator. Chem Geol 77:165–182

    Google Scholar 

  • Beccaluva L, Coltorti M, Saccani E, Siena F (2005) Magma generation and crustal accretion as evidenced by supra-subduction ophiolites of the Albanide–Hellenide Subpelagonian zone. Island Arc 14:551–563

    Google Scholar 

  • Bédard JH (1999) Petrogenesis of boninites from the Betts cove ophiolite, Newfoundland, Canada: identification of subducted source components. J Petrol 40:1853–1889

    Google Scholar 

  • Belak M, Pamić J, Kolar-Jurkovšek T, Pescaskay Z, Karan D (1995) Alpine low-grade regional metamorphic complex of Mt. Medvednica (northwestern Croatia). In: Vlahović I, Velić I, Šparica M (eds) Proceedings of 1st Croatian Geological Congress Opatija october 18-21, 1995, Institut za Geološka istraživanja, Zagreb, pp 67–70 (in Croatian)

  • Bloomer SH, Taylor B, MacLeod CJ, Stern RJ, Fryer P, Hawkins JW, Johnson L (1995) Early arc volcanism and the ophiolite problem: a perspective from drilling in the western Pacific. In Taylor B, Natland JH (eds) Active margins and marginal basins of the western Pacific. Am Geophys Un Geophys Monog 88:1–30

  • Bortolotti V, Marroni M, Pandolfi L, Principi G, Saccani E (2002) Interaction between mid-ocean ridge and subduction magmatism in Albanian ophiolites. J Geol 110:561–576

    Google Scholar 

  • Bortolotti V, Chiari M, Marcucci M, Marroni M, Pandolfi L, Principi G, Saccani E (2004) Comparison among the Albanian and Greek ophiolites, in search of constraints for the evolution of the Mesozoic Tethys ocean. Ofioliti 29:19–35

    Google Scholar 

  • Bortolotti V, Marroni M, Pandolfi L, Principi G (2005) Mesozoic to tertiary tectonic history of the Mirdita ophiolites, northern Albania. Island Arc 14:471–493

    Google Scholar 

  • Bortolotti V, Chiari M, Marroni M, Pandolfi L, Principi G, Saccani E (2013) The geodynamic evolution of the ophiolites from Albania and Greece, Dinaric-Hellenic Belt: one, two, or more oceanic basins? Int J Earth Sci 102:783–811

    Google Scholar 

  • Boutelier D, Cruden A (2013) Slab roll back rate and trench curvature controlled by arc deformation. Geology 41:911–914

    Google Scholar 

  • Burke K (2011) Plate tectonics, the Wilson cycle, and mantle plumes: geodynamics from thetop. In: Jeanloz R, Freeman KH (eds) Annu Rev Earth Planet Sci 39:1–29

  • Cameron WE (1985) Petrology and origin of primitive lavas from the Troodos ophiolite, Cyprus. Contrib Mineral Petrol 89:239–255

    Google Scholar 

  • Cameron WE, McCulloch MT, Walker DA (1983) Boninite petrogenesis: chemical and Nd-Sr isotopic constraints. Earth Planet Sci Lett 65:75–89

    Google Scholar 

  • Canil D (1987) The geochemistry of komatiites and basalts from Deadman Hill area, MunroTownship, Ontario Canada. Can J Earth Sci 24:998–1008

    Google Scholar 

  • Cavazza W, Roure F, Spakman W, Stampfli GM, Ziegler PA (2004) The TRANSMED atlas –the Mediterranean region from crust to mantle. Springer, Berlin Heidelberg 141 pp

    Google Scholar 

  • Clague DA, Frey FA (1982) Petrology and trace element geochemistry of the Honolulu volcanism, Oahu: implications for the oceanic mantle below Hawaii. J Petrol 23:447–504

    Google Scholar 

  • Coish RA, Taylor LA (1979) The effects of the cooling rate on texture and pyroxene chemistry in DSDP Leg 34 basalt: a microprobe study. Earth Planet Sci Lett 42:389–398

    Google Scholar 

  • Crawford AJ, Cameron WE (1985) Petrology and geochemistry of Cambrian boninites and low-Ti andesites from Heathcote, Victoria. Contrib Mineral Petrol 91:93–104

    Google Scholar 

  • Crawford AJ, Beccaluva L, Serri G (1981) Tectono-magmatic evolution of the west Philippine-Mariana region and the origin of boninites. Earth Planet Sci Lett 54:346–356

    Google Scholar 

  • Crawford AJ, Falloon A, Green DH (1989) Classification, petrogenesis and tectonic setting of boninites. In: Crawford AJ (ed) Boninites and related rocks. Unwin Hyman, London, pp 1–49

    Google Scholar 

  • Dick HB, Bullen T (1984) Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib Mineral Petrol 86:54–76

    Google Scholar 

  • Dilek Y, Thy P (2009) Island arc tholeiite to boninite melt evolution of the Cretaceous Kizildag (Turkey) ophiolite: model for multi-stage early arc-forearc magmatism in Tethyan subduction factories. Lithos 113:68–87

    Google Scholar 

  • Ellam RM, Hawkesworth CJ (1988) Elemental and isotopic variations in subduction related basalts: evidence for a three component model. Contrib Mineral Petrol 98:72–80

    Google Scholar 

  • Erzinger J (1989) Chemical alteration of the oceanic crust. Geol Rundsch 78:731–740

    Google Scholar 

  • Escrig S, Bézos A, Langmuir CH, Michael PJ, Arculus R (2012) Characterizing the effect of mantle source, subduction input and melting in the Fonualei spreading center, Lau Basin: constraints on the origin of the boninitic signature of the back-arc lavas. Geochem Geophys Geosyst 13:1–29. https://doi.org/10.1029/2012GC004130

  • Falloon TJ, Crawford AJ (1991) The petrogenesis of high-Ca boninite lavas dredged from the northern Tonga ridge. Earth and Planet Sci Lett 102:375–394

    Google Scholar 

  • Falloon TJ, Danyushevsky LV (2000) Melting of refractory mantle at 1.5, 2 and 2.5 Gpa under unhydrous and H2O undersatured conditions: implications for the petrogenesis of high-Ca boninites and the influence of subduction components on mantle melting. J Petrol 41:257–283

    Google Scholar 

  • Falloon TJ, Danyushevsky LV, Crawford AJ, Meffre S, Woodhead JD, Bloomer SH (2008) Boninites and adakites from the northern termination of the Tonga trench: implications for adakite petrogenesis. J Petrol 49:1–19

    Google Scholar 

  • Festa A, Pini GA, Dilek Y, Codegone J (2010) Mélanges and mélange-forming processes: ahistorical overview and new concepts. Int Geol Rev 52:1040-1105

  • Godard M, Dautria JM, Perron M (2003) Geochemical variabillity of the Oman ophiolite lavas: relationschip with spatial distribution and peleomagnetic directions. Geochem Geophys Geosyst 4:1-15. https://doi.org/10.1029/2002GC000452

  • Goričan Š, Halamić J, Grgasović T, Kolar-Jurkovšek T (2005) Stratigraphic evolution of Triassic arc-back arc system in northwestern Croatia. Bull Soc Géol Fr 176:3–22

    Google Scholar 

  • Graham CM (1976) Petrochemistry and tectonic significance of Dalradian metabasaltic rocks of the SW Scottish highlands. J Geol Soc Lond 132:61–84

    Google Scholar 

  • Green DH, Hibberson WO, Kovacs I, Rosenthal A (2010) Water and its influence on the lithosphere-astenosphere boundary. Nature 467:448–451

    Google Scholar 

  • Haas J, Mioč P, Pamić J, Tomljenović B, Árkai P, Bérczi-Makk A, Koroknai B, Kovács S, R-Felgenhauer E (2000) Complex structural pattern of the Alpine-Dinaridic Pannonian triple junction. Int J Earth Sci 89:377–389

    Google Scholar 

  • Halamić J (1998) Lithostratigraphy of Jurassic and Cretaceous sediments with ophiolites from the Mts. Medvednica, Kalnik and Ivanščica. Dissertation, University of Zagreb, 188 pp (in Croatian, English summary)

  • Hamilton WB (2007) Driving mechanism and 3-D circulation of plate tectonics. In: Sears JW, Harms TA, Evenchick CA (eds) Whence the mountains? Inquiries into the evolution of orogenic systems: a volume in honor of Raymond A Price: Geol S Am S 433, pp 1–25. https://doi.org/10.1130/2007.2433(01)

  • Hawkesworth CJ, Ellam RM (1989) Chemical fluxes and wedge replenishment rates along recent destructive plate margins. Geology 17:46–49

    Google Scholar 

  • Hawkesworth CJ, O’Nions RK, Pankhrust RJ, Hamilton PJ, Evenson NM (1977) A geochemical study of island-arc and back-arc tholeiites from the Scotia Sea. Earth Planet Sci Lett 36:253–262

    Google Scholar 

  • Hawkins JW (2003) Geology of suprasubduction zones – implications for the origin of ophiolites. In: Dilek Y, Newcomb S (eds) Ophiolite concept and the evolution of geological thought, Geol S Am S, vol 373. Boulder, Colorado, pp 227–268

  • Hawkins JW, Bloomer SH, Evans CA, Melchior JT (1984) Evolution of intra-oceanic-arc trench system. Tectonophysics 102:175–205

    Google Scholar 

  • Hickey R, Frey F (1982) Geochemical characteristics of boninite series volcanics: implications for their source. Geochim Cosmochim Acta 46:2099–2115

    Google Scholar 

  • Hoeck V, Koller F, Meisel T, Onuzi K, Kneringer E (2002) The Jurassic south Albanian ophiolites: MOR- vs. SSZ-type ophiolites. Lithos 65:143–164

    Google Scholar 

  • Ishikawa T, Nagaishi K, Umino S (2002) Boninitic volcanism in the Oman ophiolite: implications for the thermal condition during transition from spreading ridge to arc. Geology 30:899–902

    Google Scholar 

  • Ishizuka H (1999) Pumpellyte from the oceanic crust, DSDP/ODP Hole 504B. Mineral Mag 63:891–900

    Google Scholar 

  • Karpenko SF, Sharaskin AY, Balashov YA, Lyalikov AV, Spiridonov VG (1985) Isotopic and geochemical criteria for the origin of boninites: Geochem Int+ 22:1–12

  • Kostoeoulos DK, Murton BJ (1992) Origin and distribution of components in boninite genesis: significance of the OIB component. In: Parson LM, Murton BJ, Browning P (eds) Ophiolites and their modern oceanic analogues. Geol Soc Spec Publ, vol 60. Geol Soc London, London, pp 133–154

  • Kushiro I (2007) Orgin of magmas in subduction zones: a review of experimental studies. Proc Jpn Acad Ser B Phys Biol Sci 83:1–15

    Google Scholar 

  • Le Bas MJ (2000) IUGS reclassification of the high-Mg and picritic volcanic rocks. J Petrol 41:1467–1470

    Google Scholar 

  • Le Maitre RW (2002) Igneous rocks. A classification and glossary of terms. Recommendations of the International Union of Geological Sciences Subcommision on the Systematics of Igenous Rocks, 2nd ed. Cambridge Univ Press, Cambridge, New York, Melburne, pp 236

  • Lindsley DH (1983) Pyroxene thermometry. Am Mineral 68:477–493

    Google Scholar 

  • Lugović B, Šegvić B, Altherr R (2006) Petrology and tectonic significance of greenschists from the Medvednica Mts. (Sava Unit, NW Croatia). Ofioliti 31:39–50

    Google Scholar 

  • Lugović B, Slovenec D, Halamić J, Altherr R (2007) Petrology, geochemistry and geotectonic affinity of the Mesozoic ultramafic rocks from the southwesternmost mid-Transdanubian zone in Croatia. Geol Carpath 58:511–530

    Google Scholar 

  • Lugović B, Slovenec D, Schuster R, Schwarz WH, Horvat M (2015) Petrology, geochemistry and tectono-magmatic affinity of gabbroic olistoliths from the ophiolite mélange in the NW Dinaric-Vardar ophiolite zone (Mts. Kalnik and Ivanščica, North Croatia). Geol Croat 68:25–49

    Google Scholar 

  • MacPherson CG, Hall R (2001) Tectonic setting of Eocene boninite magmatism in the Izu-Bonin-Mariana forearc. Earth Planet Sci Lett 186:215–230

    Google Scholar 

  • Maehara K, Maeda J (2004) Evidence for high-Ca boninite magmatism from Paleogene primitive low-K tholeiite, Mukoojima, Hahajima Island group, south eastern Bonin (Ogasawara) forearc, Japan. Island Arc 13:452–465

    Google Scholar 

  • Marroni M, Pandolfi L, Saccani E, Zelić M (2004) Boninites from the Kopaonik area (southern Serbia): new evidences for suprasubduction ophiolites in the Vardar zone. Ofioliti 29:251–254

    Google Scholar 

  • McCulloch MT, Gamble JA (1991) Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet Sci Lett 102:358–374

    Google Scholar 

  • Meijer A (1980) Primitive arc volcanism and boninite series: examples from western Pacific island arcs. In: Hayes DE (ed) Tectonic and geologic evolution of southwest Asian seas and islands. Am Geophys Union Monogr 23, pp 269–282

  • Mevel C (1981) Occurence of pumpellyite in hydrothermally altered basalts from the Vema fracture zone (mid-Atlantic ridge). Contrib Mineral Petrol 76:386–393

    Google Scholar 

  • Milovanović D, Marchig V, Karamata S (1995) Petrology of the crossite schst from Fruška Gora Mrs. (Yugoslavia). Relict of a subducted slab of Tethyan oceancic crust. J Geodyn 20:289–304

    Google Scholar 

  • Miyashiro A (1974) Volcanic rock series in island arcs and active continental margins. Am J Sci 274:321–355

    Google Scholar 

  • Morimoto N (1988) Nomenclature of pyroxenes. Schweiz Miner Petrog 68:95–111

    Google Scholar 

  • Murton BJ (1989) Tectonic controls on boninite genesis. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Geol Soc Spec Publ 4, pp 347–377

  • Murton BJ, Peate DW, Arculus RJ, Pearce JA, Vander Laan SR (1992) Trace-element geochemistry of volcanic rocks from Site 786: the Izu-Bonin forearc. In: Fryer R, Pearce JA, Stokking LB et al. Proceedings of the Ocean Drilling Program, Scientific Results, vol 125. Ocean Drilling Program, College Station, TX, pp 211–235

  • Nakagawa M, Wada K, Wood CP (2002) Mixed magmas, mush chambers and eruption triggers: evidence from zoned clinopyroxene phenocrysts in andesitic scoria from the 1995 eruptions of Ruapehu volcano, New Zealand. J Petrol 43:2279–2303

    Google Scholar 

  • Nimis P (1999) Clinopyroxene geobarometry of magmatic rocks. Part 2. Structural geobarometers for basic to acid, tholeiitic and mildly alkaline magmatic systems. Contrib Mineral Petrol 135:62–74

    Google Scholar 

  • Nimis P, Ulmer P (1998) Clinopyroxene geobarometry of magmatic rocks part 1: an expanded structural geobarometer for anhydrous and hydrous, basic and ultrabasic systems. Contrib Mineral Petrol 133:122–135

    Google Scholar 

  • Ohnenstetter D, Brown WL (1992) Overgrowth textures, disequilibrium zoning, and cooling history of a glassy four-pyroxene boninite dyke from New Caledonia. J Petrol 33:231–271

    Google Scholar 

  • Ohnenstetter D, Brown WL (1996) Boninites: a review. In: Demaiffe D (ed) Petrology and geochemistry of magmatic suites of rocks in continental and oceanic crust. A volume dedicated to professor Jean Michot, Universite Libre de Bruxell. Royal museum for Central Africa, Tervuren, pp 307–320

  • Pamić J (2002) The Vardar zone of the Dinarides and Hellenides versus the Vardar Ocean. Eclogae Geol Helv 95:99–113

    Google Scholar 

  • Pamić J, Tomljenović B (1998) Basic geological data on the Croatian part of the mid-Transdanubian zone as exemplified by Mt. Medvednica located along the Zagreb-Zemplen fault zone. Acta Geol Hung 41:389–400

    Google Scholar 

  • Peacock SM (1987) Thermal effects of metamorphic fluids in subduction zones. Geology 15:1057–1060

    Google Scholar 

  • Pearce JA (1982) Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed) Andesites. Wiley, Chichester, pp 525–548

    Google Scholar 

  • Pearce JA (1983) Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth CJ, Norry MJ (eds) Continental basalts and mantle xenoliths. Shiva, Nantwich, pp 230–249

    Google Scholar 

  • Pearce JA, Norry MJ (1979) Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contrib Mineral Petrol 69:33–47

    Google Scholar 

  • Pearce JA, Peate DW (1995) Tectonic implications of the composition of volcanic arc magmas. Annu Rev Earth Pl Sc 23:251–285

    Google Scholar 

  • Pearce JA, Alabaster T, Shelton AW, Searle MP (1981) The Oman ophiolite as a Cretaceous arc-basin complex: evidence and implications. Phil Trans R Soc A 300:299–317

    Google Scholar 

  • Pearce JA, Lippard SJ, Roberts S (1984) Characteristics and tectonic significance of supra-subduction zone ophiolites. In: Kokelaar BP, Howells MF (eds) Marginal basin. Geology, Geol Soc Spec Publ, vol 16. Geol Soc London, London, pp 17–94

  • Pearce JA, Thirlwall ME, Ingram G, Murton BJ, Arculus RJ, Van der Laan SR (1992) Isotopic evidence for the origin of boninites and related rocks drilled in the Izu-Bonin (Ogasawara) forearc, leg 125. In: Fryer P, Pearce JA, Stokking LB et al. Proceedings of the Ocean Drilling Program, Scientific Results 125, pp 237–261

  • Peate DW, Pearce JA, Hawkesworth CJ, Colley H, Eewards CMH, Hirose K (1997) Geochemical variations in Vanuatu Arc Lavas: the role of subducted material and a variable mantle wedge composition. J Petrol 38:1331–1358

    Google Scholar 

  • Pe-Piper G, Tsikouras B, Hatzipanagiotou K (2004) Evolution of boninites and island-arc tholeiites in the Pindos ophiolite, Greece. Geol Mag 141:455–469

    Google Scholar 

  • Polat A, Hofmann AW (2003) Alteration and geochemical patterns in the 3.7–3.8 Ga Isua greenstone belt, West Greenland. Precambrian Res 126:197–218

    Google Scholar 

  • Polat A, Hofmann AW, Rosing MT (2002) Boninite-like volcanic rocks in the 3.7–3.8 Ga Isua greenstone belt, West Greenland: geochemical evidence for intra-oceanic subduction zone processes in the early earth. Chem Geol 184:231–254

    Google Scholar 

  • Pouchou JL, Pichoir F (1984) A new model for quantitative analyses. I. Application to the analysis of homogeneous samples. Rech Aérospatiale 3:13–38

  • Pouchou JL, Pichoir F (1985) “PAP” (φ-ρ-Z) correction procedure for improved quantitative microanalysis. In: Armstrong JT (ed) Microbeam Analysis. San Francisco Press, San Francisco, pp 104–106

  • Resing JA et al (2011) Active submarine eruption of boninite at West Mata volcano in the extensional NE Lau basin. Nature Geosci 4:799-806. https://doi.org/10.1038/ngeo1275

  • Saccani E (2014) A new method of discriminating different types of post-Archean ophiolitic basalts and their tectonic significance using Th-Nb and Ce-Dy-Yb systematics. Geosci Front 6:481–501

    Google Scholar 

  • Saccani E, Photiades A (2004) Mid-ocean ridge and suprasubduction affinities in the Pindos massif ophiolites (Greece): implications for magma genesis in a proto-forearc setting. Lithos 73:229–253

    Google Scholar 

  • Saccani E, Photiades A (2005) Petrogenesis and tectono-magmatic significance of volcanic and subvolcanic rocks in the Albanide–Hellenide ophiolitic mélanges. Island Arc 14:494–516

    Google Scholar 

  • Saccani E, Tassinari R (2015) The role of MORB and SSZ magma-types in the formation of Jurassic ultramafic cumulates in the Mirdita ophiolites (Albania) as deduced from chromian spinel and olivine chemistry. Ofioliti 40:37–56

    Google Scholar 

  • Saccani E, Photiades A, Santato A, Zeda O (2008) New evidence for supra-subduction zone ophiolites in the Vardar zone from the Vermion massif (northern Greece): implication for the tectono-magmatic evolution of the Vardar oceanic basin. Ofioliti 33:17–37

    Google Scholar 

  • Saccani E, Beccaluva L, Photiades A, Zeda O (2011) Petrogenesis and tectono-magmatic significance of basalts and mantle peridotites from the Albanian-Greek ophiolites and sub-ophiolitic mélanges. New constrains for the Triassic-Jurassic evolution of the neo-Tethys in the Dinaride sector. Lithos 124:227–242

    Google Scholar 

  • Saccani E, Dilek Y, Photiades A (2017) Time-progressive mantle-melt evolution and magma production in a Tethyan marginal sea: A case study of the Albanide-Hellenide ophiolites. Lithosphere 10(1):35–53

  • Saunders AD, Tarney J, Marsh NG, Wood DA (1979) Ophiolites as ocean crust or marginal basin crust: a geochemical approach. In: Panayiotou A (ed) International ophiolite symposium. Ministry of Agriculture and Natural Resources, Geological Survey Department, Nicosia, pp 193–204

    Google Scholar 

  • Schmid SM, Bernoulli D, Fügenschuh B, Matenco L, Scheffer S, Schuster R, Tischler M, Ustaszewski K (2008) The alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss J Geosci 101:139–183

    Google Scholar 

  • Šegvić B, Kukoč D, Dragičević I, Vranjković A, Brčić V, Goričan Š, Babajić E, Hrvatović H (2014) New record of middle Jurassic radiolarians and evidence of Neotethyan dynamics documented in a mélange from the central Dinaridic Ophiolite Belt (CDOB, NE Bosnia and Herzegovina). Ofioliti 39:33–43

    Google Scholar 

  • Šegvić B, Lugović B, Slovenec D, Meyer H-P (2016) Mineralogy, petrology and geochemistry of amphibolites from the Kalnik Mt. (Sava unit, North Croatia): implications for the evolution of north-westernmost part of the Dinaric-Vardar branch of Mesozioc Tethys. Ofioliti 41:35–58

    Google Scholar 

  • Shervais JW (1982) Ti-V plots and petrogenesis of modern and ophiolitic lavas. Earth Planet Sci Lett 59:101–118

    Google Scholar 

  • Shervais JW (2001) Birth, dead, and resurrection: the life cycle of supra-subduction zone ophiolites. Geochem Geophy Geosy 2:2000GC000080

  • Shiffman P, Lofgren GE (1982) Dinamic crystallization studies on the Grande ronde pillow basalts, Central Washington. J Geol 90:49–78

    Google Scholar 

  • Šikić K, Basch O, Šimunić A (1978) Basic geological map of SFRJ 1:100.000. Sheet Zagreb (L 38-80), Institut za geološka istraživanja Zagreb - Savezni geološki zavod Beograd (in Croatian)

  • Slovenec D, Lugović B (2008) Amphibole gabbroic rocks from the Mt. Medvednica ophiolite mélange (NW Croatia): geochemistry and tectonic setting. Geol Carpath 59:277–293

    Google Scholar 

  • Slovenec D, Lugović B (2009) Geochemistry and tectono-magmatic affinity of extrusive and dyke rocks from the ophiolite mélange in the SW Zagorje-mid-Transdanubian zone (Mt. Medvednica, Croatia). Ofioliti 34:63–80

    Google Scholar 

  • Slovenec D, Lugović B (2012) Evidence of the spreading culmination in the eastern Tethyan Repno oceanic domain, assessed by the petrology and geochemistry of N-MORB extrusive rocks from the Mt. Medvednica ophiolite mélange (NW Croatia). Geol Croat 65:435–446

    Google Scholar 

  • Slovenec D, Pamić J (2002) The Vardar zone ophiolites of Mt. Medvednica located along the Zagreb-Zemplin line (NW Croatia). Geol Carpath 53:53–59

    Google Scholar 

  • Slovenec D, Lugović B, Vlahović I (2010) Geochemistry, petrology and tectonomagmatic significance of basaltic rocks from the ophiolite mélange at the NW external-internal Dinarides junction (Croatia). Geol Carpath 61:273–294

    Google Scholar 

  • Slovenec D, Lugović B, Meyer HP, Garapić-Šiftar G (2011) A tectono-magmatic correlation of basaltic rocks from ophiolite mélanges at the north-eastern tip of the Sava-Vardar suture zone, northern Croatia, constrained by geochemistry and petrology. Ofioliti 36:77–100

    Google Scholar 

  • Sobolev AV, Danyushevsky DV (1994) Petrology and geochemistry of boninites from the north termination of the Tonga trench: constraints on the generation conditions of primary high-Ca boninite magmas. J Petrol 35:1183–1211

    Google Scholar 

  • Stampfli GM, Borel GD (2004) The TRANSMED transects in space and time: constraints on the paleotectonic evolution of the Mediterranean domain. In: Cavazza W, Roure F, Spakman W, Stampfli GM, Ziegler PA (eds) The TRANSMED atlas: the Mediterranean region from crust to mantle. Springer, Berlin Heidelberg, pp 53–80

    Google Scholar 

  • Stampfli GM, Borel GD, Marchant R, Mosar J (2002) Western Alps geological constraints onwestern Tethyan reconstructions. In: Rosenbaum G, Lister GS (eds) Reconstruction of the evolution of the alpine-Himalayan Orogen. J Virtual Explorer 7, pp 75–104

  • Stern C (1979) Open and closed system igneous fractionation within two Chilean ophiolites and tectonic implication. Contrib Mineral Petrol 68:243–258

    Google Scholar 

  • Stern RJ, Bloomer SH (1992) Subduction zone infancy: examples from the Eocene Izu-Bonin-Mariana and Jurassic California arcs. Bull Geol Soc Am 104:1621–1636

    Google Scholar 

  • Stevens RE (1944) Composition of some chromites of the western hemisphere. Am Mineral 29:1–34

    Google Scholar 

  • Stillman CJ, Williams CT (1979) Geochemistry and tectonic setting of some Ordovician volcanic rocks in east and Southeast Ireland. Earth Planet Sci Lett 41:288–310

    Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in ocean basins. Geol Soc Spec Publ 42:313–345

    Google Scholar 

  • Swinden HS, Jenner GA, Fryer BJ, Hertogen J, Roddick JC (1990) Petrogenesis and paleotectonic history of the wild bight group, an Ordovician rifted island arc in Central Newfoundland. Contrib Mineral Petrol 105:219–241

    Google Scholar 

  • Tari V, Pamić J (1998) Geodynamic evolution of the northern Dinarides and the southern parts of the Pannonian Basin. Tectonophysics 297:269–281

    Google Scholar 

  • Tatsumi Y, Eggins S (1995) Subduction zone magmatism. Blackwell Science, London 211 pp

    Google Scholar 

  • Tatsumi Y, Kogiso T (2003) The subduction factory: its role in the evolution of the Earth’s crustand mantle. In: Larter RD, Leat ET (eds) Intra-oceanic subduction systems: tectonic and magmatic processes. Geol Soc Spec Publ 219, pp 55–80

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford 312 pp

    Google Scholar 

  • Taylor RN, Nesbit RW, Vidal P, Harnon RS, Auvray B, Crouda CEIW (1994) Mineralogy, chemistry and genesis of the boninite series volcanics, Chihijima, Bonin Islands, Japan. J Petrol 35:577–617

    Google Scholar 

  • Tomljenović B, Csontos L, Márton E, Márton P (2008) Tectonic evolution of the northwestern internal Dinarides as constrained by structures and rotation of Medvednica Mountains, North Croatia. Geol Soc Spec Publ 298:145–167

    Google Scholar 

  • Topuz G, Celık FÖ, Sengör AM, Altintas E, Zack T, Rolland Y, Barth M (2013) Jurassic ophiolite formation and emplacement as backstop to a subduction-accretion complex in Northeast Turkey, the Refahıye ophiolite, and relation to the Balkan ophiolites. Int J Earth Sci 313:1054–1087

    Google Scholar 

  • Umino S, Kushiro I (1989) Experimental studies on boninite petrogenesis. In: Crawford AJ (ed) Boninite and related rocks. Unwin Hyman, London, pp 89–111

    Google Scholar 

  • Uyeda S, Kanamori H (1979) Back-arc opening and the mode of subduction. J Geophys Res 84:1049–1061

    Google Scholar 

  • Van der Laan SR, Flower MFJ, Koster van Groos AF (1989) Experimental evidence for the origin of boninites; near-liquideus phase relations to 7.5 kbar. In: Crawford AJ (ed) Boninites. Klower Academic Publischer, Dorchecht, pp 112–147

    Google Scholar 

  • Wass SY (1979) Multiple origins of clinopyroxenes in alcalic basaltic rocks. Lithos 12:116–132

    Google Scholar 

  • West HB, Garcia MO, Gerlach DC, Romano J (1992) Geochemistry of tholeiites from Lanai, Hawaii. Contrib Mineral Petrol 112:520–542

    Google Scholar 

  • Winter J (2001) An introduction to igneous and metamorphic petrology. Prentice Hall

  • Wood DA (1980) The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and establishing the nature of crustal contamination of basaltic lavas of the British tertiary volcanic province. Earth Planet Sci Lett 50:11–30

    Google Scholar 

  • Wood DA, Joron JL, Treuil M (1979) A reappraisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic settings. Earth Planet Sci Lett 45:326–336

    Google Scholar 

  • Woodhead JD, Eggins SM, Johnson RW (1998) Magma genesis in the New Britain Island Arc: Further insights into melting and mass transfer processes. J Petrol 39:1641–1668

    Google Scholar 

  • Xia X, Song S, Niu Y (2012) Tholeiite–boninite terrane in the north Qilian suture zone: implications for subduction initiation and back-arc basin development. Chem Geol 328:259–277

    Google Scholar 

Download references

Acknowledgments

We thank Ilona Fin for producing excellent polished thin sections. Our appreciation is further extended to Boško Lugović and Hans-Peter Meyer for their assistance with microprobe measurements at the Institute of Geosciences (University of Heidelberg, Germany). Sam Carmalt and Aleksandar Ristić helped to improve the quality of the English. Critical comments and constructive reviews by Dragan Milovanović, Shuguang Song and an anonymous expert, as well as editorial comments of journal editors Qiang Wang and Lutz Nasdala contributed significantly to the manuscript quality. The presented work is the contribution to the scientific project “Mesozoic magmatic, mantle and pyroclastic rocks of north-western Croatia” (grant no. 181-1951126-1141 to D. S.) carried out under the support of the Croatian Ministry of Science, Education and Sport.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damir Slovenec.

Additional information

Editorial handling: Q. Wang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slovenec, D., Šegvić, B. Boninite volcanic rocks from the mélange of NW Dinaric-Vardar ophiolite zone (Mt. Medvednica, Croatia) – record of Middle to Late Jurassic arc-forearc system in the Tethyan subduction factory. Miner Petrol 113, 17–37 (2019). https://doi.org/10.1007/s00710-018-0637-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-018-0637-0

Keywords

Navigation