Skip to main content
Log in

The involvement of diamond-forming fluids in the metasomatic ‘cocktail’ of kimberlite sources

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Microinclusion-bearing diamonds offer the opportunity to investigate relationships between mantle metasomatism, diamond formation and kimberlite eruptions in intracratonic provinces. We have analyzed a suite of 7 microinclusion-bearing diamonds from the Finsch Group II kimberlite, South Africa, and identified two diamond populations: ‘Finsch IaA’ diamonds have nitrogen solely in A-centers and contain saline high-density-fluid (HDF) microinclusions, while ‘Finsch IaAB’ diamonds have nitrogen in both A- and B-centers (25–35% B-centers) and are characterized by carbonatite HDF compositions. Based on nitrogen aggregation states and estimates for mantle residence temperatures, we conclude that ‘Finsch IaA’ diamonds formed during a young saline metasomatic event that preceded kimberlite eruption by ~50 kyr to 15 Myr. The possible timing of metasomatism and formation of ‘Finsch IaAB’ diamonds by carbonatite HDFs is less constrained, and could have taken place between ~15 Myr and 2 Gyr before eruption. Two of the diamonds encapsulated omphacite microinclusions in association with saline or low-Mg carbonatitic-like HDF. We observe compositional differences for Al2O3 vs. CaO between these metasomatised omphacites, and also compared to omphacites in mantle eclogites which were identified as metasomatised by kimberlite or high-Mg carbonatite; suggesting a possible relationship between Al2O3 and CaO in metasomatised omphacite and the type of fluid/melt it interacted with. The combined data for microinclusion-bearing diamonds from the Finsch Group II kimberlite and the neighbouring Group I kimberlites at Koffiefontein and De Beers Pool indicate that a substantial volume of the southwest Kaapvaal deep lithosphere was impacted by saline metasomatism during Cretaceous time, and a direct relationship between saline metasomatism, diamond formation and the Kaapvaal late-Mesozoic ‘kimberlite bloom’. We therefore conclude that saline HDFs play a key role in the buildup of metasomatic mantle sources leading to kimberlite eruptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akagi T, Masuda A (1988) Isotopic and elemental evidence for a relationship between kimberlite and Zaire cubic diamonds. Nature 336(6200):665–667

    Google Scholar 

  • Appleyard CM, Viljoen KS, Dobbe R (2004) A study of eclogitic diamonds and their inclusions from the Finsch kimberlite pipe, South Africa. Lithos 77(1):317–332

    Google Scholar 

  • Aulbach S, Jacob DE (2016) Major- and trace-elements in cratonic mantle eclogites and pyroxenites reveal heterogeneous sources and metamorphic processing of low-pressure protoliths. Lithos 262(Supplement C):586–605

    Google Scholar 

  • Aulbach S, Shirey SB, Stachel T, Creighton S, Muehlenbachs K, Harris JW (2009) Diamond formation episodes at the southern margin of the Kaapvaal craton: Re–Os systematics of sulfide inclusions from the Jagersfontein Mine. Contrib Mineral Petr 157(4):525–540

    Google Scholar 

  • Aulbach S, Gerdes A, Viljoen K (2016) Formation of diamondiferous kyanite–eclogite in a subduction mélange. Geochim Cosmochim Ac 179:156–176

    Google Scholar 

  • Bastin G, Heijligers J (1991) Quantitative electron probe microanalysis of ultralight elements (boron-oxygen). In: Heinrich K, Newbury D (eds) Electron probe quantitation, Workshop at the National Bureau of Standards, Gaithersburg. Maryland. Plenum Press, New York, pp 145–161

    Google Scholar 

  • Boyd SR, Kiflawi I, Woods GS (1994) The relationship between infrared-absorption and the A defect concentration in diamond. Philos Mag B 69(6):1149–1153

    Google Scholar 

  • Boyd SR, Kiflawi I, Woods GS (1995) Infrared absorption by the B nitrogen aggregate in diamond. Philos Mag B 72(3):351–361

    Google Scholar 

  • Brey GP, Bulatov VK, Girnis AV, Lahaye Y (2008) Experimental melting of carbonated peridotite at 610 GPa. J Petrol 49(4):797–821

    Google Scholar 

  • Carlson RW, Pearson DG, James DE (2005) Physical, chemical, and chronological characteristics of continental mantle. Rev Geophys 43(1):1–24

    Google Scholar 

  • Coleman RG, Lee DE, Beatty LB, Brannock WW (1965) Eclogites and eclogites: their differences and similarities. Geol Soc Am Bull 76(5):483–508

    Google Scholar 

  • Dalton JA, Presnall DC (1998) The continuum of primary carbonatitic-kimberlitic melt compositions in equilibrium with lherzolite: data from the system CaO-MgO-Al2O3-SiO2-CO2 at 6 GPa. J Petrol 39(11–12):1953–1964

    Google Scholar 

  • Dawson JB (1984) Contrasting types of upper-mantle metasomatism? In: Kornprobst J (ed) developments in petrology. vol 11. Elsevier, pp 289–294

  • Deines P (1980) The carbon isotopic composition of diamonds: relationship to diamond shape, color, occurrence and vapor composition. Geochim Cosmochim Ac 44(7):943–961

    Google Scholar 

  • Deines P, Gurney JJ, Harris JW (1984) Associated chemical and carbon isotopic composition variations in diamonds from Finsch and Premier kimberlite, South Africa. Geochim Cosmochim Ac 48(2):325–342

    Google Scholar 

  • Dvir O, Kessel R (2017) The effect of CO2 on the water-saturated solidus of K-poor peridotite between 4 and 6 GPa. Geochim Cosmochim Ac 206:184–200

    Google Scholar 

  • Evans T (1992) Aggregation of nitrogen in diamond. In: Field JE (ed) The properties of natural and synthetic diamond. Academic Press, London, pp 259–290

    Google Scholar 

  • Giuliani A, Kamenetsky VS, Kendrick MA, Phillips D, Goemann K (2013) Nickel-rich metasomatism of the lithospheric mantle by pre-kimberlitic alkali-S–Cl-rich C–O–H fluids. Contrib Mineral Petr 165(1):155–171

    Google Scholar 

  • Giuliani A, Phillips D, Maas R, Woodhead JD, Kendrick MA, Greig A, Armstrong RA, Chew D, Kamenetsky VS, Fiorentini ML (2014) LIMA U–Pb ages link lithospheric mantle metasomatism to Karoo magmatism beneath the Kimberley region, South Africa. Earth Planet Sc Lett 401:132–147

    Google Scholar 

  • Green DH, Wallace ME (1988) Mantle metasomatism by ephemeral carbonatite melts. Nature 336:459–462

    Google Scholar 

  • Greenwood JC, Gibson SA, Thompson RN, Weska RK, Dickin AP (1999) Cretaceous kimberlites from the Paranatinga–Batovi region, Central Brazil: geochemical evidence for subcratonic lithospheric mantle heterogeneity. In: Dawson JB (ed) Proceedings of the VIIth international kimberlite conference, vol 1, pp 291–298

    Google Scholar 

  • Grégoire M, Bell D, Le Roex A (2002) Trace element geochemistry of phlogopite-rich mafic mantle xenoliths: their classification and their relationship to phlogopite-bearing peridotites and kimberlites revisited. Contrib Mineral Petr 142(5):603–625

    Google Scholar 

  • Griffin WL, Gurney JJ, Ryan CG (1992) Variations in trapping temperatures and trace elements in peridotite-suite inclusions from African diamonds: evidence for two inclusion suites, and implications for lithosphere stratigraphy. Contrib Mineral Petr 110(1):1–15

    Google Scholar 

  • Griffin WL, Shee RS, Ryan GC, Win TT, Wyatt AB (1999) Harzburgite to lherzolite and back again: metasomatic processes in ultramafic xenoliths from the Wesselton kimberlite, Kimberley, South Africa. Contrib Mineral Petr 134(2):232–250

    Google Scholar 

  • Griffin WL, Powell WJ, Pearson NJ, O'Reilly SY (2008) GLITTER: data reduction software for laser ablation ICP-MS. Appendix 2 in: Sylvester P (ed) laser ablation-ICP-MS in the earth sciences: mineralogical association of Canada short course series, vol 40, pp 204-207

  • Griffin WL, Batumike JM, Greau Y, Pearson NJ, Shee SR, O’Reilly SY (2014) Emplacement ages and sources of kimberlites and related rocks in southern Africa: U–Pb ages and Sr–Nd isotopes of groundmass perovskite. Contrib Mineral Petr 168(1):1032

    Google Scholar 

  • Grütter H, Quadling K (1999) Can sodium in garnet be used to monitor eclogitic diamond potential. In: Dawson JB (ed) proceedings of the VIIth international kimberlite conference, vol 1, pp 314–320

    Google Scholar 

  • Gurney JJ, Harris JW, Rickard RS (1979) Silicate and oxide inclusions in diamonds from the Finsch kimberlite pipe. In: Boyd FR, HOA M (eds) Kimberlites, diatremes, and diamonds: their geology, petrology, and geochemistry. American Geophysical Union, pp 1–15

  • Gurney JJ, Helmstaedt HH, Richardson SH, Shirey SB (2010) Diamonds through time. Econ Geol 105(3):689–712

    Google Scholar 

  • Howell D, O'Neill CJ, Grant KJ, Griffin WL, Pearson NJ, O'Reilly SY (2012) μ-FTIR mapping: distribution of impurities in different types of diamond growth. Diam Relat Mater 29(Supplement C):29–36

    Google Scholar 

  • Izraeli ES, Harris JW, Navon O (2001) Brine inclusions in diamonds: a new upper mantle fluid. Earth Planet Sc Lett 187(3):323–332

    Google Scholar 

  • Izraeli ES, Harris JW, Navon O (2004) Fluid and mineral inclusions in cloudy diamonds from Koffiefontein, South Africa. Geochim Cosmochim Ac 68(11):2561–2575

    Google Scholar 

  • Jablon BM, Navon O (2016) Most diamonds were created equal. Earth Planet Sc Lett 443:41–47

    Google Scholar 

  • Jacob D (2004) Nature and origin of eclogite xenoliths from kimberlites. Lithos 77(1–4):295–316

    Google Scholar 

  • Jollands MC, Hanger BJ, Yaxley GM, Hermann J, Kilburn MR (2018) Timescales between mantle metasomatism and kimberlite ascent indicated by diffusion profiles in garnet crystals from peridotite xenoliths. Earth Planet Sc Lett 481(Supplement C):143–153

    Google Scholar 

  • Kamenetsky MB, Sobolev AV, Kamenetsky VS, Maas R, Danyushevsky LV, Thomas R, Pokhilenko NP, Sobolev NV (2004) Kimberlite melts rich in alkali chlorides and carbonates: a potent metasomatic agent in the mantle. Geology 32(10):845–848

    Google Scholar 

  • Kiflawi I, Mayer AE, Spear PM, Van Wyk JA, Woods GS (1994) Infrared absorption by the single nitrogen and A defect centres in diamond. Philos Mag B 69(6):1141–1147

    Google Scholar 

  • Klein-BenDavid O, Izraeli ES, Hauri E, Navon O (2007) Fluid inclusions in diamonds from the Diavik mine, Canada and the evolution of diamond-forming fluids. Geochim Cosmochim Ac 71(3):723–744

    Google Scholar 

  • Klein-BenDavid O, Logvinova AM, Schrauder M, Spetius ZV, Weiss Y, Hauri EH, Kaminsky FV, Sobolev NV, Navon O (2009) High-Mg carbonatitic microinclusions in some Yakutian diamonds—a new type of diamond-forming fluid. Lithos 112:648–659

    Google Scholar 

  • Konzett J, Krenn K, Rubatto D, Hauzenberger C, Stalder R (2014) The formation of saline mantle fluids by open-system crystallization of hydrous silicate-rich vein assemblages – evidence from fluid inclusions and their host phases in MARID xenoliths from the central Kaapvaal craton, South Africa. Geochim Cosmochim Ac 147:1–25

    Google Scholar 

  • Kramers JD (1979) Lead, uranium, strontium, potassium and rubidium in inclusion-bearing diamonds and mantle-derived xenoliths from southern Africa. Earth Planet Sc Lett 42(1):58–70

    Google Scholar 

  • Lazarov M, Woodland AB, Brey GP (2009) Thermal state and redox conditions of the Kaapvaal mantle: a study of xenoliths from the Finsch mine, South Africa. Lithos 112:913–923

    Google Scholar 

  • Le Roex AP, Bell DR, Davis P (2003) Petrogenesis of group I kimberlites from Kimberley, South Africa: evidence from bulk-rock geochemistry. J Petrol 44(12):2261–2286

    Google Scholar 

  • Luth RW (1993) Diamonds, eclogites, and the oxidation state of the Earth's mantle. Science 261(5117):66–68

    Google Scholar 

  • Macgregor ID, Carter JL (1970) The chemistry of clinopyroxenes and garnets of eclogite and peridotite xenoliths from the Roberts Victor mine, South Africa. Phys Earth Planet IN 3:391–397

    Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120(3–4):223–253

    Google Scholar 

  • Menzies MA, Wass SY (1983) CO2- and LREE-rich mantle below eastern Australia: a REE and isotopic study of alkaline magmas and apatite-rich mantle xenoliths from the southern Highlands Province, Australia. Earth Planet Sc Lett 65(2):287–302

    Google Scholar 

  • Navon O, Hutcheon ID, Rossman GR, Wasserburg GJ (1988) Mantle-derived fluids in diamond micro-inclusions. Nature 335:784

    Google Scholar 

  • Palot M, Pearson DG, Stern RA, Stachel T, Harris JW (2013) Multiple growth events, processes and fluid sources involved in diamond genesis: a micro-analytical study of sulphide-bearing diamonds from Finsch mine, RSA. Geochim Cosmochim Ac 106:51–70

    Google Scholar 

  • Pearson DG, Shirey SB, Carlson RW, Boyd FR, Pokhilenko NP, Shimizu N (1995) Re-Os, Sm-Nd, and Rb-Sr isotope evidence for thick Archean lithospheric mantle beneath the Siberian craton modified by multistage metasomatism. Geochim Cosmochim Ac 59(5):959–977

    Google Scholar 

  • Pearson DG, Shirey SB, Harris JW, Carlson RW (1998) Sulphide inclusions in diamonds from the Koffiefontein kimberlite, S Africa: constraints on diamond ages and mantle Re–Os systematics. Earth Planet Sc Lett 160(3–4):311–326

    Google Scholar 

  • Phillips D, Harris J (1995) Geothermobarometry of diamond inclusions from the De Beers Pool mines, Kimberley, South Africa. In: Sixth international kimberlite conference, Novosibirsk, extended abstracts, pp 441–443

    Google Scholar 

  • Phillips D, Harris JW, Viljoen KS (2004) Mineral chemistry and thermobarometry of inclusions from De Beers Pool diamonds, Kimberley, South Africa. Lithos 77(1–4):155–179

    Google Scholar 

  • Pokhilenko NP, Agashev AM, Litasov KD, Pokhilenko LN (2015) Carbonatite metasomatism of peridotite lithospheric mantle: implications for diamond formation and carbonatite-kimberlite magmatism. Russ Geol Geophys 56(1):280–295

    Google Scholar 

  • Rege S, Jackson S, Griffin WL, Davies RM, Pearson NJ, O'Reilly SY (2005) Quantitative trace-element analysis of diamond by laser ablation inductively coupled plasma mass spectrometry. J Anal Atom Spectrom 20(7):601–611

    Google Scholar 

  • Rege S, Griffin WL, Pearson NJ, Araujo D, Zedgenizov D, O'Reilly SY (2010) Trace-element patterns of fibrous and monocrystalline diamonds: insights into mantle fluids. Lithos 118(3):313–337

    Google Scholar 

  • Richardson SH, Gurney JJ, Erlank AJ, Harris JW (1984) Origin of diamonds in old enriched mantle. Nature 310(5974):198–202

    Google Scholar 

  • Rickard RS, Harris JW, Gurney JJ, Cardoso P (1989) Mineral inclusions in diamonds from Koffiefontein mine. In: Ross J, Jacques AL, Ferguson J, Green DH, O'Reilly SY, Danchin RV, AJA J (eds) Kimberlites and related rocks, vol 2, Proceedings of the fourth international kimberlite conference. Geological society of Australia special publication 14. Perth, pp 1054–1062

  • Schneider ME, Eggler DH (1986) Fluids in equilibrium with peridotite minerals: implications for mantle metasomatism. Geochim Cosmochim Ac 50(5):711–724

    Google Scholar 

  • Schrauder M, Koeberl C, Navon O (1996) Trace element analyses of fluid-bearing diamonds from Jwaneng, Botswana. Geochim Cosmochim Ac 60(23):4711–4724

    Google Scholar 

  • Shee SR, Gurney JJ, Robinson DN (1982) Two diamond-bearing peridotite xenoliths from the Finsch kimberlite, South Africa. Contrib Mineral Petr 81(2):79–87

    Google Scholar 

  • Shirey SB, Richardson SH, Harris JW (2004) Integrated models of diamond formation and craton evolution. Lithos 77(1–4):923–944

    Google Scholar 

  • Simon NSC, Carlson RW, Pearson DG, Davies GR (2007) The origin and evolution of the Kaapvaal cratonic lithospheric mantle. J Petrol 48(3):589–625

    Google Scholar 

  • Skuzovatov S, Zedgenizov D, Howell D, Griffin WL (2016) Various growth environments of cloudy diamonds from the Malobotuobia kimberlite field (Siberian craton). Lithos 265:96–107

    Google Scholar 

  • Smit KV, Stachel T, Creaser RA, Ickert RB, DuFrane SA, Stern RA, Seller M (2014) Origin of eclogite and pyroxenite xenoliths from the Victor kimberlite, Canada, and implications for Superior craton formation. Geochim Cosmochim Ac 125:308–337

    Google Scholar 

  • Smith CB, Allsopp HL, Kramers JD, Hutchinson G, Roddick JC (1985) Emplacement ages of Jurassic-Cretaceous South African kimberlites by the Rb-Sr method on phlogopite and whole-rock samples. S Afr J Geol 88:249–266

    Google Scholar 

  • Smith CB, Gurney JJ, Harris JW, Otter ML, Kirkley MB, Jagoutz E (1991) Neodymium and strontium isotope systematics of eclogite and websterite paragenesis inclusions from single diamonds, Finsch and Kimberley Pool, RSA. Geochim Cosmochim Ac 55(9):2579–2590

    Google Scholar 

  • Smith EM, Kopylova MG, Nowell GM, Pearson DG, Ryder J (2012) Archean mantle fluids preserved in fibrous diamonds from Wawa, Superior craton. Geology 40(12):1071–1074

    Google Scholar 

  • Stachel T, Aulbach S, Brey GP, Harris JW, Leost I, Tappert R, Viljoen KS (2004) The trace element composition of silicate inclusions in diamonds: a review. Lithos 77(1):1–19

    Google Scholar 

  • Taylor LA, Neal CR (1989) Eclogites with oceanic crustal and mantle signatures from the Bellsbank kimberlite, South Africa, part I: mineralogy, petrography, and whole rock chemistry. J Geol 97(5):551–567

    Google Scholar 

  • Taylor WR, Jaques AL, Ridd M (1990) Nitrogen-defect aggregation characteristics of some Australian diamonds – time-temperature constraints on the source regions of pipe and alluvial diamonds. Am Mineral 75(11–12):1290–1310

    Google Scholar 

  • Taylor WR, Canil D, Judith Milledge H (1996) Kinetics of Ib to IaA nitrogen aggregation in diamond. Geochim Cosmochim Ac 60(23):4725–4733

    Google Scholar 

  • Thompson WK (1965) Infra-red spectroscopic studies of aqueous systems. Part 1- molar extinction coefficients of water, deuterium oxide, deuterium hydrogen oxide, aqueous sodium chloride and carbon disulphide. T Faraday Soc 61(0):2635–2640

    Google Scholar 

  • Tomlinson EL, Jones AP, Harris JW (2006) Co-existing fluid and silicate inclusions in mantle diamond. Earth Planet Sc Lett 250(3–4):581–595

    Google Scholar 

  • Tomlinson EL, Müller W, EIMF (2009) A snapshot of mantle metasomatism: trace element analysis of coexisting fluid (LA-ICP-MS) and silicate (SIMS) inclusions in fibrous diamonds. Earth Planet Sc Lett 279(3–4):362–372

    Google Scholar 

  • van Achterbergh E, Griffin WL, Ryan CG, O'Reilly SY, Pearson NJ, Kivi K, Doyle BJ (2002) Subduction signature for quenched carbonatites from the deep lithosphere. Geology 30(8):743–746

    Google Scholar 

  • van Achterbergh E, Griffin WL, Ryan CG, O'Reilly SY, Pearson NJ, Kivi K, Doyle BJ (2004) Melt inclusions from the deep Slave lithosphere: implications for the origin and evolution of mantle-derived carbonatite and kimberlite. Lithos 76(1):461–474

    Google Scholar 

  • Venyaminov SY, Prendergast FG (1997) Water (H2O and D2O) molar absorptivity in the 1000-4000 cm−1 range and quantitative infrared spectroscopy of aqueous solutions. Anal Biochem 248(2):234–245

    Google Scholar 

  • Viljoen KS, Swash PM, Otter ML, Schulze DJ, Lawless PJ (1992) Diamondiferous garnet harzburgites from the Finsch kimberlite, Northern Cape, South Africa. Contrib Mineral Petr 110(1):133–138

    Google Scholar 

  • Viljoen KS, Harris JW, Ivanic T, Richardson SH, Gray K (2014) Trace element chemistry of peridotitic garnets in diamonds from the Premier (Cullinan) and Finsch kimberlites, South Africa: contrasting styles of mantle metasomatism. Lithos 208:1–15

    Google Scholar 

  • Wang A, Pasteris JD, Meyer HOA, Dele-Duboi ML (1996) Magnesite-bearing inclusion assemblage in natural diamond. Earth Planet Sc Lett 141(1):293–306

    Google Scholar 

  • Wass SYH, Henderson P, Elliott CJ (1980) Chemical heterogeneity and metasomatism in the upper mantle: evidence from rare earth and other elements in apatite-rich xenoliths in basaltic rocks from eastern Australia. Philos T R Soc S-A 297(1431):333–346

    Google Scholar 

  • Weiss Y, Kessel R, Griffin WL, Kiflawi I, Klein-BenDavid O, Bell DR, Harris JW, Navon O (2009) A new model for the evolution of diamond-forming fluids: evidence from microinclusion-bearing diamonds from Kankan, Guinea. Lithos 112:660–674

    Google Scholar 

  • Weiss Y, Kiflawi I, Navon O (2010) IR spectroscopy: quantitative determination of the mineralogy and bulk composition of fluid microinclusions in diamonds. Chem Geol 275(1):26–34

    Google Scholar 

  • Weiss Y, Griffin WL, Bell DR, Navon O (2011) High-Mg carbonatitic melts in diamonds, kimberlites and the sub-continental lithosphere. Earth Planet Sc Lett 309(3–4):337–347

    Google Scholar 

  • Weiss Y, Griffin WL, Navon O (2013) Diamond-forming fluids in fibrous diamonds: the trace-element perspective. Earth Planet Sc Lett 376(Supplement C):110–125

    Google Scholar 

  • Weiss Y, Kiflawi I, Davies N, Navon O (2014) High-density fluids and the growth of monocrystalline diamonds. Geochim Cosmochim Ac 141(Supplement C):145–159

    Google Scholar 

  • Weiss Y, McNeill J, Pearson DG, Nowell GM, Ottley CJ (2015) Highly saline fluids from a subducting slab as the source for fluid-rich diamonds. Nature 524(7565):339–342

    Google Scholar 

  • Weiss Y, Navon O, Goldstein SL, Harris JW (2018) Inclusions in diamonds constrain thermo-chemical conditions during Mesozoic metasomatism of the Kaapvaal cratonic mantle. Earth Planet Sc Lett 491:134–147

    Google Scholar 

  • Wyllie PJ (1977) Mantle fluid compositions buffered by carbonates in peridotite-CO2–H2O. The J Geol 85(2):187–207

    Google Scholar 

  • Zedgenizov DA, Ragozin AL, Shatsky VS, Araujo D, Griffin WL, Kagi H (2009) Mg and Fe-rich carbonate–silicate high-density fluids in cuboid diamonds from the Internationalnaya kimberlite pipe (Yakutia). Lithos 112:638–647

    Google Scholar 

Download references

Acknowledgements

We thank William L. Griffin and Suzanne Y. O’Reilly for the use of the LA-ICP-MS at Macquarie University, Daniel Howell for the use of a modified version of DiaMap, and Jeffrey W. Harris for the donation of diamonds used in this study. This study was supported by National Science Foundation grants EAR13-48045 and EAR17-25323 to Y.W. and S.L.G. FTIR analyses were supported through the German Israeli Foundation grant GIF I-1239-301.8/2014 to O.N. The handling guest editor Thomas Stachel and two anonymous reviewers made excellent suggestions that greatly improved this paper. This is Lamont–Doherty Earth Observatory contribution number (# 8230).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaakov Weiss.

Additional information

Editorial handling: T. Stachel

Electronic supplementary material

ESM 1

(XLSX 26.3 kb)

ESM 2

(XLSX 20.9 kb)

ESM 3

(XLSX 19.1 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weiss, Y., Goldstein, S.L. The involvement of diamond-forming fluids in the metasomatic ‘cocktail’ of kimberlite sources. Miner Petrol 112 (Suppl 1), 149–167 (2018). https://doi.org/10.1007/s00710-018-0613-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-018-0613-8

Keywords

Navigation