Origin of complex zoning in olivine from diverse, diamondiferous kimberlites and tectonic settings: Ekati (Canada), Alto Paranaiba (Brazil) and Kaalvallei (South Africa)

Abstract

Olivine in kimberlites can provide unique insights into magma petrogenesis, because it is the most abundant xenocrystic phase and a stable magmatic product over most of the liquid line of descent. In this study we examined the petrography and chemistry of olivine in kimberlites from different tectonic settings, including the Slave craton, Canada (Ekati: Grizzly, Koala), the Brasilia mobile belt (Limpeza-18, Tres Ranchos-04), and the Kaapvaal craton, South Africa (Kaalvallei: Samada, New Robinson). Olivine cores display a wide range of compositions (e.g., Mg# = 78–95). The similarity in olivine composition, resorption of core zones and inclusions of mantle-derived phases, indicates that most olivine cores originated from the disaggregation of mantle peridotites, including kimberlite-metasomatised lithologies (i.e. sheared lherzolites and megacrysts). Olivine rims typically show a restricted range of Mg#, with decreasing Ni and increasing Mn and Ca contents, a characteristic of kimberlitic olivine worldwide. The rims host inclusions of groundmass minerals, which implies crystallisation just before and/or during emplacement. There is a direct correlation between olivine rim composition and groundmass mineralogy, whereby high Mg/Fe rims are associated with carbonate-rich kimberlites, and lower Mg/Fe rims are correlated with increased phlogopite and Fe-bearing oxide mineral abundances. There are no differences in olivine composition between explosive (Grizzly) and hypabyssal (Koala) kimberlites. Olivine in kimberlites also displays transitional zones and less common internal zones, between cores and rims. The diffuse transitional zones exhibit intermediate compositions between cores and rims, attributed to partial re-equilibration of xenocrystic cores with the ascending kimberlite melt. In contrast, internal zones form discrete layers with resorbed margins and restricted Mg# values, but variable Ni, Mn and Ca concentrations, which indicates a discrete crystallization event from precursor kimberlite melts at mantle depths. Overall, olivine exhibits broadly analogous zoning in kimberlites worldwide. Variable compositions for individual zones relate to different parental melt compositions rather than variations in tectonic setting or emplacement mechanism.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Araujo A, Carlson RW, Gaspar JC, Bizzi LA (2001) Petrology of kamafugites and kimberlites from the Alto Paranaíba Alkaline Province, Minas Gerais, Brazil. Contrib Mineral Petr 142(2):163–177

    Article  Google Scholar 

  2. Armstrong JP, Wilson M, Barnett RL, Nowicki T, Kjarsgaard BA (2004) Mineralogy of primary carbonate-bearing hypabyssal kimberlite, Lac de Gras, Slave Province, Northwest Territories, Canada. Lithos 76(1–4):415–433

    Article  Google Scholar 

  3. Arndt NT, Guitreau M, Boullier AM, le Roex A, Tommasi A, Cordier P, Sobolev A (2010) Olivine, and the origin of kimberlite. J Petrol 51(3):573–602

  4. Boyd FR, Nixon PH (1975) Origins of the ultramafic nodules from some kimberlites of northern Lesotho and the Monastery Mine, South Africa. Phys Chem Earth 9:431–454

    Article  Google Scholar 

  5. Brett RC, Russell JK, Moss S (2009) Origin of olivine in kimberlite: phenocryst or impostor? Lithos 112:201–212

    Article  Google Scholar 

  6. Brett RC, Russell JK, Andrews GDM, Jones TJ (2015) The ascent of kimberlite: insights from olivine. Earth Planet Sc Lett 424:119–131

    Article  Google Scholar 

  7. Bussweiler Y, Foley SF, Prelević D, Jacob DE (2015) The olivine macrocryst problem: new insights from minor and trace element compositions of olivine from Lac de Gras kimberlites, Canada. Lithos 220–223:238–252

    Article  Google Scholar 

  8. Bussweiler Y, Stone R, Pearson D, Luth R, Stachel T, Kjarsgaard B, Menzies A (2016) The evolution of calcite-bearing kimberlites by melt-rock reaction: evidence from polymineralic inclusions within clinopyroxene and garnet megacrysts from Lac de Gras kimberlites, Canada. Contrib Mineral Petr 171(7):1–25

    Article  Google Scholar 

  9. Canil D, Fedortchouk Y (1999) Garnet dissolution and the emplacement of kimberlites. Earth Planet Sc Lett 167(3–4):227–237

    Article  Google Scholar 

  10. Cordier C, Sauzeat L, Arndt NT, Boullier A-M, Batanova V, Barou F (2015) Metasomatism of the lithospheric mantle immediately precedes kimberlite eruption: new evidence from olivine composition and microstructures. J Petrol 56(9):1775–1796

    Article  Google Scholar 

  11. Dawson J, Hill P, Kinny P (2001) Mineral chemistry of a zircon-bearing, composite, veined and metasomatised upper-mantle peridotite xenolith from kimberlite. Contrib Mineral Petr 140(6):720–733

    Article  Google Scholar 

  12. Downes PJ, Wartho J-A, Griffin BJ (2006) Magmatic evolution and ascent history of the aries micaceous kimberlite, Central Kimberley basin, Western Australia: evidence from zoned phlogopite phenocrysts, and UV laser 40Ar/39Ar analysis of phlogopite-biotite. J Petrol 47(9):1751–1783

    Article  Google Scholar 

  13. Fedortchouk Y, Canil D (2004) Intensive variables in kimberlite magmas, Lac de Gras, Canada and implications for diamond survival. J Petrol 45(9):1725–1745

    Article  Google Scholar 

  14. Felgate MR (2014) The petrogenesis of Brazilian kimberlites and kamafugites intruded along the 125° lineament: improved geochemical and geochronological constraints on magmatism in Rondonia and the Alto Paranaiba Igneous Province. PhD thesis, The University of Melbourne, Australia

  15. Fitzapyne A, Giuliani A, Phillips D, Hergt J, Woodhead JD, Farquhar J, Fiorentini ML, Drysdale RN, WU N (2018) Kimberlite-related metasomatism recorded in MARID and PIC mantle xenoliths. Miner Petrol, this volume

    Google Scholar 

  16. Gibson S, Thompson R, Leonardos O, Dickin A, Mitchell J (1995) The Late Cretaceous impact of the Trindade mantle plume: evidence from large-volume, mafic, potassic magmatism in SE Brazil. J Petrol 36(1):189–229

    Article  Google Scholar 

  17. Giuliani A (2018) Insights into kimberlite petrogenesis and mantle metasomatism from a review of the compositional zoning of olivine in kimberlites worldwide. Lithos 312-313:322–342

    Article  Google Scholar 

  18. Giuliani A, Foley SF (2016) The geochemical complexity of kimberlite rocks and their olivine populations: a comment on cordier et al. (Journal of Petrology, 56, 1775–1796, 2015). J Petrol 57(5):921–926

    Article  Google Scholar 

  19. Giuliani A, Kamenetsky VS, Kendrick MA, Phillips D, Wyatt BA, Maas R (2013) Oxide, sulphide and carbonate minerals in a mantle polymict breccia: Metasomatism by proto-kimberlite magmas, and relationship to the kimberlite megacrystic suite. Chem Geol 353:4–18

    Article  Google Scholar 

  20. Giuliani A, Phillips D, Kamenetsky VS, Kendrick MA, Wyatt BA, Goemann K, Hutchinson G (2014) Petrogenesis of mantle polymict breccias: insights into mantle processes coeval with kimberlite magmatism. J Petrol 55(4):831–858

    Article  Google Scholar 

  21. Giuliani A, Phillips D, Kamenetsky VS, Goemann K (2016) Constraints on kimberlite ascent mechanisms revealed by phlogopite compositions in kimberlites and mantle xenoliths. Lithos 240–243:189–201

    Article  Google Scholar 

  22. Giuliani A, Soltys A, Phillips D, Kamenetsky VS, Maas R, Goemann K, Woodhead JD, Drysdale RN, Griffin WL (2017) The final stages of kimberlite petrogenesis: petrography, mineral chemistry, melt inclusions and Sr-C-O isotope geochemistry of the Bultfontein kimberlite (Kimberley, South Africa). Chem Geol 455:342–356

    Article  Google Scholar 

  23. Grütter HS (2009) Pyroxene xenocryst geotherms: techniques and application. Lithos 112(Supplement 2):1167–1178

    Article  Google Scholar 

  24. Guarino V, Wu F-Y, Lustrino M, Melluso L, Brotzu P, Gomes CB, Ruberti E, Tassinari CCG, Svisero DP (2013) U–Pb ages, Sr–Nd- isotope geochemistry, and petrogenesis of kimberlites, kamafugites and phlogopite-picrites of the Alto Paranaíba Igneous Province, Brazil. Chem Geol 353:65–82

    Article  Google Scholar 

  25. Gurney JJ, Jakob WRO, Dawson JB (1979) Megacrysts from the Monastery kimberlite pipe. In: Boyd FR, Meyer HOA (eds) The Mantle Sample. Proceedings of the 2nd International Kimberlte Conference. American Geophysical Union, Washington, DC, pp 227–243

  26. Hops JJ, Gurney JJ, Harte B (1992) The jagersfontein Cr-poor megacryst suite: towards a model for megacryst petrogenesis. J Volcanol Geoth Res 50(1–2):143–160

    Article  Google Scholar 

  27. Howarth GH, Taylor LA (2016) Multi-stage kimberlite evolution tracked in zoned olivine from the Benfontein sill, South Africa. Lithos 262:384–397

    Article  Google Scholar 

  28. Hunter RH, Taylor LA (1982) Instability of garnet from the mantle: glass as evidence of metasomatic melting. Geology 10(12):617–620

    Article  Google Scholar 

  29. Jollands MC, Hanger BJ, Yaxley GM, Hermann J, Kilburn MR (2018) Timescales between mantle metasomatism and kimberlite ascent indicated by diffusion profiles in garnet crystals from peridotite xenoliths. Earth Planet Sc Lett 481:143–153

    Article  Google Scholar 

  30. Jones TJ, Russell JK, Porritt LA, Brown RJ (2014) Morphology and surface features of olivine in kimberlite: implications for ascent processes. Solid Earth 5(1):313–326

    Article  Google Scholar 

  31. Kamenetsky VS, Kamenetsky MB, Sobolev AV, Golovin AV, Demouchy S, Faure K, Sharygin VV, Kuzmin DV (2008) Olivine in the Udachnaya-East kimberlite (Yakutia, Russia): types, compositions and origins. J Petrol 49(4):823–839

    Article  Google Scholar 

  32. Kamenetsky VS, Kamenetsky MB, Sobolev AV, Golovin AV, Sharygin VV, Pokhilenko NP, Sobolev NV (2009) Can pyroxenes be liquidus minerals in the kimberlite magma? Lithos 112S:213–222

    Article  Google Scholar 

  33. Kamenetsky VS, Grutter H, Kamenetsky MB, Goemann K (2013) Parental carbonatitic melt of the Koala kimberlite (Canada): constraints from melt inclusions in olivine and Cr-spinel, and groundmass carbonate. Chem Geol 353:96–111

    Article  Google Scholar 

  34. Kamenetsky VS, Belousova EA, Giuliani A, Kamenetsky MB, Goemann K, Griffin WL (2014a) Chemical abrasion of zircon and ilmenite megacrysts in the Monastery kimberlite: implications for the composition of kimberlite melts. Chem Geol 383:76–85

    Article  Google Scholar 

  35. Kamenetsky VS, Golovin AV, Maas R, Giuliani A, Kamenetsky MB, Weiss Y (2014b) Towards a new model for kimberlite petrogenesis: evidence from unaltered kimberlites and mantle minerals. Earth-Sci Rev 139:145–167

    Article  Google Scholar 

  36. Kargin AV, Sazonova LV, Nosova AA, Tretyachenko VV (2016) Composition of garnet and clinopyroxene in peridotite xenoliths from the Grib kimberlite pipe, Arkhangelsk diamond province, Russia: evidence for mantle metasomatism associated with kimberlite melts. Lithos 262:442–455

    Article  Google Scholar 

  37. Kargin AV, Sazonova LV, Nosova AA, Lebedeva NM, Tretyachenko VV, Abersteiner A (2017) Cr-rich clinopyroxene megacrysts from the Grib kimberlite, Arkhangelsk province, Russia: relation to clinopyroxene–phlogopite xenoliths and evidence for mantle metasomatism by kimberlite melts. Lithos 292-293:34–48

    Article  Google Scholar 

  38. Kopylova MG, Nowell GM, Pearson DG, Markovic G (2009) Crystallization of megacrysts from protokimberlitic fluids: geochemical evidence from high-Cr megacrysts in the Jericho kimberlite. Lithos 112S:284–295

    Article  Google Scholar 

  39. Lawless PJ, Gurney JJ, Dawson JB (1979) Polymict peridotites from the Bultfontein and De Beers mines, Kimberley, South Africa. In: Boyd FR, Meyer HOA (eds) The Mantle Sample. Proceedings of the 2nd International Kimberlte Conference. American Geophysical Union, Washington, DC, pp 145–155

  40. Leonardos OH, Carvalho JB, Tallarico FHB, Gibson SA, Thompson RN, Meyer HOA, Dickin AP (1993) O xenolito de granada Iherzolito de Tres Ranches 4: uma rocha matriz do diamante na provfncia magmatica cretacea do Alto Paranaíba. Annais de Simpósio de Geologia do Diamanteo. Unversidade Federal do Mato Grosso. Special Publication 1:3–16

    Google Scholar 

  41. Luth RW (2009) The activity of silica in kimberlites, revisited. Contrib Mineral Petr 158(2):283–294

    Article  Google Scholar 

  42. Menzies A, Westerlund K, Grütter H, Gurney J, Carlson J, Fung A, Nowicki T (2004) Peridotitic mantle xenoliths from kimberlites on the Ekati Diamond Mine property, N.W.T., Canada: major element compositions and implications for the lithosphere beneath the central Slave craton. Lithos 77(1–4):395–412

    Article  Google Scholar 

  43. Mitchell RH (2008) Petrology of hypabyssal kimberlites: relevance to primary magma compositions. J Volcanol Geotherm Res 174(1–3):1–8

    Article  Google Scholar 

  44. Moore AE (1988) Olivine: a monitor of magma evolutionary paths in kimberlites and olivine melilitites. Contrib Mineral Petr 99(2):238–248

    Article  Google Scholar 

  45. Moore A, Belousova E (2005) Crystallization of Cr-poor and Cr-rich megacryst suites from the host kimberlite magma: implications for mantle structure and the generation of kimberlite magmas. Contrib Mineral Petr 149(4):462–481

    Article  Google Scholar 

  46. Moore A, Costin G (2016) Kimberlitic olivines derived from the Cr-poor and Cr-rich megacryst suites. Lithos 258:215–227

    Article  Google Scholar 

  47. Moore AE, Lock NP (2001) The origin of mantle-derived megacrysts and sheared peridotites-evidence from kimberlites in the northern Lesotho-Orange Free State (South Africa) and Botswana pipe clusters. S Afr J Geol 104(1):23–38

    Article  Google Scholar 

  48. Moss S, Russell JK, Brett RC, Andrews GDM (2009) Spatial and temporal evolution of kimberlite magma at A154N, Diavik, Northwest Territories, Canada. Lithos 112S:541–552

    Article  Google Scholar 

  49. Moss S, Russell JK, Smith BHS, Brett RC (2010) Olivine crystal size distributions in kimberlite. Am Mineral 95(4):527–536

    Article  Google Scholar 

  50. Nielsen TFD, Sand KK (2008) The Majuagaa kimberlite dike, Maniitsoq region, western Greenland: constraints on an Mg-rich silicocarbonatitic melt composition from groundmass mineralogy and bulk compositions. Can Mineral 46(4):1043–1061

    Article  Google Scholar 

  51. Nowell GM, Pearson DG, Bell DR, Carlson RW, Smith CB, Kempton PD, Noble SR (2004) Hf isotope systematics of kimberlites and their megacrysts: new constraints on their source regions. J Petrol 45(8):1583–1612

    Article  Google Scholar 

  52. Nowicki T, Crawford B, Dyck D, Carlson J, McElroy R, Oshust P, Helmstaedt H (2004) The geology of kimberlite pipes of the Ekati property, Northwest Territories, Canada. Lithos 76(1–4):1–27

    Article  Google Scholar 

  53. Nowicki T, Porritt L, Crawford B, Kjarsgaard B (2008) Geochemical trends in kimberlites of the Ekati property, Northwest Territories, Canada: insights on volcanic and resedimentation processes. J Volcanol Geotherm Res 174(1–3):117–127

    Article  Google Scholar 

  54. Pilbeam LH, Nielsen TFD, Waight TE (2013) Digestion fractional crystallization (DFC): an important process in the genesis of kimberlites: evidence from olivine in the Majuagaa kimberlite, southern West Greenland. J Petrol 54(7):1399–1425

    Article  Google Scholar 

  55. Pivin M, Debaille V, Mattielli N, Demaiffe D (2013) Nd–Hf isotope systematics of megacrysts from the Mbuji-Mayi kimberlites, D. R. Congo: evidence for a metasomatic origin related to kimberlite interaction with the cratonic lithospheric mantle. In: Pearson GD, Grütter SH, Harris WJ, Kjarsgaard AB, O’Brien H, Rao CNV, Sparks S (eds) Proceedings of the 10th International Kimberlite Conference. Springer, New Delhi, pp 123–136

    Google Scholar 

  56. Porritt LA, Cas RA (2011) The influence of complex intra-and extra-vent processes on facies characteristics of the Koala Kimberlite, NWT, Canada: volcanology, sedimentology and intrusive processes. Bull Volcanol 73(6):717–735

    Article  Google Scholar 

  57. Read G, Grutter H, Winter S, Luckman N, Gaunt F, Thomsen F (2004) Stratigraphic relations, kimberlite emplacement and lithospheric thermal evolution, Quiricó Basin, Minas Gerais State, Brazil. Lithos 77(1):803–818

    Article  Google Scholar 

  58. Russell JK, Porritt LA, Lavallee Y, Dingwell DB (2012) Kimberlite ascent by assimilation-fuelled buoyancy. Nature 481(7381):352–356

    Article  Google Scholar 

  59. Sazonova LV, Nosova AA, Kargin AV, Borisovskiy SE, Tretyachenko VV, Abazova ZM, Griban’ YG (2015) Olivine from the Pionerskaya and V. Grib kimberlite pipes, Arkhangelsk diamond province, Russia: types, composition, and origin. Petrology 23(3):227–258

    Article  Google Scholar 

  60. Shaikh AM, Kumar SP, Patel SC, Thakur SS, Ravi S, Behera D (2018) The P3 kimberlite and P4 lamproite, Wajrakarur kimberlite field, India: mineralogy, and major and minor element compositions of olivines as records of their phenocrystic vs xenocrystic origin. Miner Petrol, this volume

  61. Shore M, Fowler AD (1996) Oscillatory zoning in minerals; a common phenomenon. Can Mineral 34(6):1111–1126

    Google Scholar 

  62. Sobolev NV, Sobolev AV, Tomilenko AA, Kovyazin SV, Batanova VG, Kuz’min DV (2015) Paragenesis and complex zoning of olivine macrocrysts from unaltered kimberlite of the Udachnaya-East pipe, Yakutia: relationship with the kimberlite formation conditions and evolution. Russ Geol Geophys 56(1–2):260–279

    Article  Google Scholar 

  63. Soltys A, Giuliani A, Phillips D, Kamenetsky VS, Maas R, Woodhead J, Rodemann T (2016) In-situ assimilation of mantle minerals by kimberlitic magmas – direct evidence from a garnet wehrlite xenolith entrained in the Bultfontein kimberlite (Kimberley, South Africa). Lithos 256:182–196

    Article  Google Scholar 

  64. Soltys A, Giuliani A, Phillips D (2018a) A new approach to reconstructing the composition and evolution of kimberlite melts: a case study of the archetypal Bultfontein kimberlite (Kimberley, South Africa). Lithos 304–307:1–15

    Article  Google Scholar 

  65. Soltys A, Giuliani A, Phillips D (2018b) Crystallisation and melt evolution of the De Beers dyke (Kimberley, South Africa). Miner Petrol, this volume

  66. Stiefenhofer J (1989) Petrography, mineralogy and geochemistry of the Kaalvallei kimberlite pipe. Rhodes University, Grahamstown, South Africa, Orange Free State. B Sc Hons Thesis

    Google Scholar 

  67. Stone RS, Luth RW (2016) Orthopyroxene survival in deep carbonatite melts: implications for kimberlites. Contrib Mineral Petr 171(7):1–9

    Article  Google Scholar 

  68. Tappe S, Pearson DG, Nowell G, Nielsen T, Milstead P, Muehlenbachs K (2011) A fresh isotopic look at Greenland kimberlites: Cratonic mantle lithosphere imprint on deep source signal. Earth Planet Sc Lett 305(1–2):235–248

    Article  Google Scholar 

  69. Taylor WR, Kingdom L (1999) Mineralogy of the Jagersfontein kimberlite - an unusual Group I micaceous kimberlite - and a comment on the robustness of the mineralogical definition of 'orangeite'. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) 7th Intern Kimb Conf, vol 2. Red Roof Design, Cape Town, pp 861–866

    Google Scholar 

  70. Webb KJ, Crawford B, Nowicki TE, Hetman CM, Carlson J (2008) Coherent kimberlite at Ekati, Northwestern Territories, Canada: textural and geochemical variations and implications for emplacement. 9th Intern Kimb Conf. In: Ext Abstr 9IKC-A-00225

    Google Scholar 

  71. Woodhead J, Hergt J, Giuliani A, Phillips D, Maas R (2017) Tracking continental-scale modification of the Earth’s mantle using zircon megacrysts. Geochem Persp Lett 4:1–6

    Google Scholar 

Download references

Acknowledgements

We acknowledge provision of samples from the Ekati mine by BHP Billiton, and permission obtained from Dominion Diamond Mines ULC to publish our results. Samples from Limpeza-18, Tres Ranchos-04, and Samada were generously provided by the De Beers Group, while the New Robinson kimberlite was sourced in the John J. Gurney Upper Mantle Room Collection housed at the University of Cape Town. We would like to thank Graham Hutchinson for his aid with SEM and EPMA analyses at the University of Melbourne. Thoughtful reviews by Nick Arndt and Curtis Brett and the editorial handling by Phil Janney and Lutz Nasdala improved the final manuscript. This research was supported by the Australian Research Council through a Discovery Early Career Research Award (DECRA) to AG (grant n. DE-150100009). This is publication 32 from the Kimberlites and Diamonds Research Group at the University of Melbourne, also listed as contribution 1173 from the ARC Centre of Excellence for Core to Crust Fluid Systems and 1234 from the GEMOC Key Centre.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrea Giuliani.

Additional information

Editorial handling: P. Janney

Electronic supplementary material

ESM 1

(PPTX 5894 kb)

ESM 2

(XLSX 73 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lim, E., Giuliani, A., Phillips, D. et al. Origin of complex zoning in olivine from diverse, diamondiferous kimberlites and tectonic settings: Ekati (Canada), Alto Paranaiba (Brazil) and Kaalvallei (South Africa). Miner Petrol 112, 539–554 (2018). https://doi.org/10.1007/s00710-018-0607-6

Download citation

Keywords

  • Kimberlite
  • Olivine
  • Zoning