Advertisement

Mineralogy and Petrology

, Volume 112, Supplement 2, pp 539–554 | Cite as

Origin of complex zoning in olivine from diverse, diamondiferous kimberlites and tectonic settings: Ekati (Canada), Alto Paranaiba (Brazil) and Kaalvallei (South Africa)

  • Emilie Lim
  • Andrea GiulianiEmail author
  • David Phillips
  • Karsten Goemann
Original Paper
  • 198 Downloads

Abstract

Olivine in kimberlites can provide unique insights into magma petrogenesis, because it is the most abundant xenocrystic phase and a stable magmatic product over most of the liquid line of descent. In this study we examined the petrography and chemistry of olivine in kimberlites from different tectonic settings, including the Slave craton, Canada (Ekati: Grizzly, Koala), the Brasilia mobile belt (Limpeza-18, Tres Ranchos-04), and the Kaapvaal craton, South Africa (Kaalvallei: Samada, New Robinson). Olivine cores display a wide range of compositions (e.g., Mg# = 78–95). The similarity in olivine composition, resorption of core zones and inclusions of mantle-derived phases, indicates that most olivine cores originated from the disaggregation of mantle peridotites, including kimberlite-metasomatised lithologies (i.e. sheared lherzolites and megacrysts). Olivine rims typically show a restricted range of Mg#, with decreasing Ni and increasing Mn and Ca contents, a characteristic of kimberlitic olivine worldwide. The rims host inclusions of groundmass minerals, which implies crystallisation just before and/or during emplacement. There is a direct correlation between olivine rim composition and groundmass mineralogy, whereby high Mg/Fe rims are associated with carbonate-rich kimberlites, and lower Mg/Fe rims are correlated with increased phlogopite and Fe-bearing oxide mineral abundances. There are no differences in olivine composition between explosive (Grizzly) and hypabyssal (Koala) kimberlites. Olivine in kimberlites also displays transitional zones and less common internal zones, between cores and rims. The diffuse transitional zones exhibit intermediate compositions between cores and rims, attributed to partial re-equilibration of xenocrystic cores with the ascending kimberlite melt. In contrast, internal zones form discrete layers with resorbed margins and restricted Mg# values, but variable Ni, Mn and Ca concentrations, which indicates a discrete crystallization event from precursor kimberlite melts at mantle depths. Overall, olivine exhibits broadly analogous zoning in kimberlites worldwide. Variable compositions for individual zones relate to different parental melt compositions rather than variations in tectonic setting or emplacement mechanism.

Keywords

Kimberlite Olivine Zoning 

Notes

Acknowledgements

We acknowledge provision of samples from the Ekati mine by BHP Billiton, and permission obtained from Dominion Diamond Mines ULC to publish our results. Samples from Limpeza-18, Tres Ranchos-04, and Samada were generously provided by the De Beers Group, while the New Robinson kimberlite was sourced in the John J. Gurney Upper Mantle Room Collection housed at the University of Cape Town. We would like to thank Graham Hutchinson for his aid with SEM and EPMA analyses at the University of Melbourne. Thoughtful reviews by Nick Arndt and Curtis Brett and the editorial handling by Phil Janney and Lutz Nasdala improved the final manuscript. This research was supported by the Australian Research Council through a Discovery Early Career Research Award (DECRA) to AG (grant n. DE-150100009). This is publication 32 from the Kimberlites and Diamonds Research Group at the University of Melbourne, also listed as contribution 1173 from the ARC Centre of Excellence for Core to Crust Fluid Systems and 1234 from the GEMOC Key Centre.

Supplementary material

710_2018_607_MOESM1_ESM.pptx (5.8 mb)
ESM 1 (PPTX 5894 kb)
710_2018_607_MOESM2_ESM.xlsx (73 kb)
ESM 2 (XLSX 73 kb)

References

  1. Araujo A, Carlson RW, Gaspar JC, Bizzi LA (2001) Petrology of kamafugites and kimberlites from the Alto Paranaíba Alkaline Province, Minas Gerais, Brazil. Contrib Mineral Petr 142(2):163–177CrossRefGoogle Scholar
  2. Armstrong JP, Wilson M, Barnett RL, Nowicki T, Kjarsgaard BA (2004) Mineralogy of primary carbonate-bearing hypabyssal kimberlite, Lac de Gras, Slave Province, Northwest Territories, Canada. Lithos 76(1–4):415–433CrossRefGoogle Scholar
  3. Arndt NT, Guitreau M, Boullier AM, le Roex A, Tommasi A, Cordier P, Sobolev A (2010) Olivine, and the origin of kimberlite. J Petrol 51(3):573–602Google Scholar
  4. Boyd FR, Nixon PH (1975) Origins of the ultramafic nodules from some kimberlites of northern Lesotho and the Monastery Mine, South Africa. Phys Chem Earth 9:431–454CrossRefGoogle Scholar
  5. Brett RC, Russell JK, Moss S (2009) Origin of olivine in kimberlite: phenocryst or impostor? Lithos 112:201–212CrossRefGoogle Scholar
  6. Brett RC, Russell JK, Andrews GDM, Jones TJ (2015) The ascent of kimberlite: insights from olivine. Earth Planet Sc Lett 424:119–131CrossRefGoogle Scholar
  7. Bussweiler Y, Foley SF, Prelević D, Jacob DE (2015) The olivine macrocryst problem: new insights from minor and trace element compositions of olivine from Lac de Gras kimberlites, Canada. Lithos 220–223:238–252CrossRefGoogle Scholar
  8. Bussweiler Y, Stone R, Pearson D, Luth R, Stachel T, Kjarsgaard B, Menzies A (2016) The evolution of calcite-bearing kimberlites by melt-rock reaction: evidence from polymineralic inclusions within clinopyroxene and garnet megacrysts from Lac de Gras kimberlites, Canada. Contrib Mineral Petr 171(7):1–25CrossRefGoogle Scholar
  9. Canil D, Fedortchouk Y (1999) Garnet dissolution and the emplacement of kimberlites. Earth Planet Sc Lett 167(3–4):227–237CrossRefGoogle Scholar
  10. Cordier C, Sauzeat L, Arndt NT, Boullier A-M, Batanova V, Barou F (2015) Metasomatism of the lithospheric mantle immediately precedes kimberlite eruption: new evidence from olivine composition and microstructures. J Petrol 56(9):1775–1796CrossRefGoogle Scholar
  11. Dawson J, Hill P, Kinny P (2001) Mineral chemistry of a zircon-bearing, composite, veined and metasomatised upper-mantle peridotite xenolith from kimberlite. Contrib Mineral Petr 140(6):720–733CrossRefGoogle Scholar
  12. Downes PJ, Wartho J-A, Griffin BJ (2006) Magmatic evolution and ascent history of the aries micaceous kimberlite, Central Kimberley basin, Western Australia: evidence from zoned phlogopite phenocrysts, and UV laser 40Ar/39Ar analysis of phlogopite-biotite. J Petrol 47(9):1751–1783CrossRefGoogle Scholar
  13. Fedortchouk Y, Canil D (2004) Intensive variables in kimberlite magmas, Lac de Gras, Canada and implications for diamond survival. J Petrol 45(9):1725–1745CrossRefGoogle Scholar
  14. Felgate MR (2014) The petrogenesis of Brazilian kimberlites and kamafugites intruded along the 125° lineament: improved geochemical and geochronological constraints on magmatism in Rondonia and the Alto Paranaiba Igneous Province. PhD thesis, The University of Melbourne, AustraliaGoogle Scholar
  15. Fitzapyne A, Giuliani A, Phillips D, Hergt J, Woodhead JD, Farquhar J, Fiorentini ML, Drysdale RN, WU N (2018) Kimberlite-related metasomatism recorded in MARID and PIC mantle xenoliths. Miner Petrol, this volumeGoogle Scholar
  16. Gibson S, Thompson R, Leonardos O, Dickin A, Mitchell J (1995) The Late Cretaceous impact of the Trindade mantle plume: evidence from large-volume, mafic, potassic magmatism in SE Brazil. J Petrol 36(1):189–229CrossRefGoogle Scholar
  17. Giuliani A (2018) Insights into kimberlite petrogenesis and mantle metasomatism from a review of the compositional zoning of olivine in kimberlites worldwide. Lithos 312-313:322–342CrossRefGoogle Scholar
  18. Giuliani A, Foley SF (2016) The geochemical complexity of kimberlite rocks and their olivine populations: a comment on cordier et al. (Journal of Petrology, 56, 1775–1796, 2015). J Petrol 57(5):921–926CrossRefGoogle Scholar
  19. Giuliani A, Kamenetsky VS, Kendrick MA, Phillips D, Wyatt BA, Maas R (2013) Oxide, sulphide and carbonate minerals in a mantle polymict breccia: Metasomatism by proto-kimberlite magmas, and relationship to the kimberlite megacrystic suite. Chem Geol 353:4–18CrossRefGoogle Scholar
  20. Giuliani A, Phillips D, Kamenetsky VS, Kendrick MA, Wyatt BA, Goemann K, Hutchinson G (2014) Petrogenesis of mantle polymict breccias: insights into mantle processes coeval with kimberlite magmatism. J Petrol 55(4):831–858CrossRefGoogle Scholar
  21. Giuliani A, Phillips D, Kamenetsky VS, Goemann K (2016) Constraints on kimberlite ascent mechanisms revealed by phlogopite compositions in kimberlites and mantle xenoliths. Lithos 240–243:189–201CrossRefGoogle Scholar
  22. Giuliani A, Soltys A, Phillips D, Kamenetsky VS, Maas R, Goemann K, Woodhead JD, Drysdale RN, Griffin WL (2017) The final stages of kimberlite petrogenesis: petrography, mineral chemistry, melt inclusions and Sr-C-O isotope geochemistry of the Bultfontein kimberlite (Kimberley, South Africa). Chem Geol 455:342–356CrossRefGoogle Scholar
  23. Grütter HS (2009) Pyroxene xenocryst geotherms: techniques and application. Lithos 112(Supplement 2):1167–1178CrossRefGoogle Scholar
  24. Guarino V, Wu F-Y, Lustrino M, Melluso L, Brotzu P, Gomes CB, Ruberti E, Tassinari CCG, Svisero DP (2013) U–Pb ages, Sr–Nd- isotope geochemistry, and petrogenesis of kimberlites, kamafugites and phlogopite-picrites of the Alto Paranaíba Igneous Province, Brazil. Chem Geol 353:65–82CrossRefGoogle Scholar
  25. Gurney JJ, Jakob WRO, Dawson JB (1979) Megacrysts from the Monastery kimberlite pipe. In: Boyd FR, Meyer HOA (eds) The Mantle Sample. Proceedings of the 2nd International Kimberlte Conference. American Geophysical Union, Washington, DC, pp 227–243Google Scholar
  26. Hops JJ, Gurney JJ, Harte B (1992) The jagersfontein Cr-poor megacryst suite: towards a model for megacryst petrogenesis. J Volcanol Geoth Res 50(1–2):143–160CrossRefGoogle Scholar
  27. Howarth GH, Taylor LA (2016) Multi-stage kimberlite evolution tracked in zoned olivine from the Benfontein sill, South Africa. Lithos 262:384–397CrossRefGoogle Scholar
  28. Hunter RH, Taylor LA (1982) Instability of garnet from the mantle: glass as evidence of metasomatic melting. Geology 10(12):617–620CrossRefGoogle Scholar
  29. Jollands MC, Hanger BJ, Yaxley GM, Hermann J, Kilburn MR (2018) Timescales between mantle metasomatism and kimberlite ascent indicated by diffusion profiles in garnet crystals from peridotite xenoliths. Earth Planet Sc Lett 481:143–153CrossRefGoogle Scholar
  30. Jones TJ, Russell JK, Porritt LA, Brown RJ (2014) Morphology and surface features of olivine in kimberlite: implications for ascent processes. Solid Earth 5(1):313–326CrossRefGoogle Scholar
  31. Kamenetsky VS, Kamenetsky MB, Sobolev AV, Golovin AV, Demouchy S, Faure K, Sharygin VV, Kuzmin DV (2008) Olivine in the Udachnaya-East kimberlite (Yakutia, Russia): types, compositions and origins. J Petrol 49(4):823–839CrossRefGoogle Scholar
  32. Kamenetsky VS, Kamenetsky MB, Sobolev AV, Golovin AV, Sharygin VV, Pokhilenko NP, Sobolev NV (2009) Can pyroxenes be liquidus minerals in the kimberlite magma? Lithos 112S:213–222CrossRefGoogle Scholar
  33. Kamenetsky VS, Grutter H, Kamenetsky MB, Goemann K (2013) Parental carbonatitic melt of the Koala kimberlite (Canada): constraints from melt inclusions in olivine and Cr-spinel, and groundmass carbonate. Chem Geol 353:96–111CrossRefGoogle Scholar
  34. Kamenetsky VS, Belousova EA, Giuliani A, Kamenetsky MB, Goemann K, Griffin WL (2014a) Chemical abrasion of zircon and ilmenite megacrysts in the Monastery kimberlite: implications for the composition of kimberlite melts. Chem Geol 383:76–85CrossRefGoogle Scholar
  35. Kamenetsky VS, Golovin AV, Maas R, Giuliani A, Kamenetsky MB, Weiss Y (2014b) Towards a new model for kimberlite petrogenesis: evidence from unaltered kimberlites and mantle minerals. Earth-Sci Rev 139:145–167CrossRefGoogle Scholar
  36. Kargin AV, Sazonova LV, Nosova AA, Tretyachenko VV (2016) Composition of garnet and clinopyroxene in peridotite xenoliths from the Grib kimberlite pipe, Arkhangelsk diamond province, Russia: evidence for mantle metasomatism associated with kimberlite melts. Lithos 262:442–455CrossRefGoogle Scholar
  37. Kargin AV, Sazonova LV, Nosova AA, Lebedeva NM, Tretyachenko VV, Abersteiner A (2017) Cr-rich clinopyroxene megacrysts from the Grib kimberlite, Arkhangelsk province, Russia: relation to clinopyroxene–phlogopite xenoliths and evidence for mantle metasomatism by kimberlite melts. Lithos 292-293:34–48CrossRefGoogle Scholar
  38. Kopylova MG, Nowell GM, Pearson DG, Markovic G (2009) Crystallization of megacrysts from protokimberlitic fluids: geochemical evidence from high-Cr megacrysts in the Jericho kimberlite. Lithos 112S:284–295CrossRefGoogle Scholar
  39. Lawless PJ, Gurney JJ, Dawson JB (1979) Polymict peridotites from the Bultfontein and De Beers mines, Kimberley, South Africa. In: Boyd FR, Meyer HOA (eds) The Mantle Sample. Proceedings of the 2nd International Kimberlte Conference. American Geophysical Union, Washington, DC, pp 145–155Google Scholar
  40. Leonardos OH, Carvalho JB, Tallarico FHB, Gibson SA, Thompson RN, Meyer HOA, Dickin AP (1993) O xenolito de granada Iherzolito de Tres Ranches 4: uma rocha matriz do diamante na provfncia magmatica cretacea do Alto Paranaíba. Annais de Simpósio de Geologia do Diamanteo. Unversidade Federal do Mato Grosso. Special Publication 1:3–16Google Scholar
  41. Luth RW (2009) The activity of silica in kimberlites, revisited. Contrib Mineral Petr 158(2):283–294CrossRefGoogle Scholar
  42. Menzies A, Westerlund K, Grütter H, Gurney J, Carlson J, Fung A, Nowicki T (2004) Peridotitic mantle xenoliths from kimberlites on the Ekati Diamond Mine property, N.W.T., Canada: major element compositions and implications for the lithosphere beneath the central Slave craton. Lithos 77(1–4):395–412CrossRefGoogle Scholar
  43. Mitchell RH (2008) Petrology of hypabyssal kimberlites: relevance to primary magma compositions. J Volcanol Geotherm Res 174(1–3):1–8CrossRefGoogle Scholar
  44. Moore AE (1988) Olivine: a monitor of magma evolutionary paths in kimberlites and olivine melilitites. Contrib Mineral Petr 99(2):238–248CrossRefGoogle Scholar
  45. Moore A, Belousova E (2005) Crystallization of Cr-poor and Cr-rich megacryst suites from the host kimberlite magma: implications for mantle structure and the generation of kimberlite magmas. Contrib Mineral Petr 149(4):462–481CrossRefGoogle Scholar
  46. Moore A, Costin G (2016) Kimberlitic olivines derived from the Cr-poor and Cr-rich megacryst suites. Lithos 258:215–227CrossRefGoogle Scholar
  47. Moore AE, Lock NP (2001) The origin of mantle-derived megacrysts and sheared peridotites-evidence from kimberlites in the northern Lesotho-Orange Free State (South Africa) and Botswana pipe clusters. S Afr J Geol 104(1):23–38CrossRefGoogle Scholar
  48. Moss S, Russell JK, Brett RC, Andrews GDM (2009) Spatial and temporal evolution of kimberlite magma at A154N, Diavik, Northwest Territories, Canada. Lithos 112S:541–552CrossRefGoogle Scholar
  49. Moss S, Russell JK, Smith BHS, Brett RC (2010) Olivine crystal size distributions in kimberlite. Am Mineral 95(4):527–536CrossRefGoogle Scholar
  50. Nielsen TFD, Sand KK (2008) The Majuagaa kimberlite dike, Maniitsoq region, western Greenland: constraints on an Mg-rich silicocarbonatitic melt composition from groundmass mineralogy and bulk compositions. Can Mineral 46(4):1043–1061CrossRefGoogle Scholar
  51. Nowell GM, Pearson DG, Bell DR, Carlson RW, Smith CB, Kempton PD, Noble SR (2004) Hf isotope systematics of kimberlites and their megacrysts: new constraints on their source regions. J Petrol 45(8):1583–1612CrossRefGoogle Scholar
  52. Nowicki T, Crawford B, Dyck D, Carlson J, McElroy R, Oshust P, Helmstaedt H (2004) The geology of kimberlite pipes of the Ekati property, Northwest Territories, Canada. Lithos 76(1–4):1–27CrossRefGoogle Scholar
  53. Nowicki T, Porritt L, Crawford B, Kjarsgaard B (2008) Geochemical trends in kimberlites of the Ekati property, Northwest Territories, Canada: insights on volcanic and resedimentation processes. J Volcanol Geotherm Res 174(1–3):117–127CrossRefGoogle Scholar
  54. Pilbeam LH, Nielsen TFD, Waight TE (2013) Digestion fractional crystallization (DFC): an important process in the genesis of kimberlites: evidence from olivine in the Majuagaa kimberlite, southern West Greenland. J Petrol 54(7):1399–1425CrossRefGoogle Scholar
  55. Pivin M, Debaille V, Mattielli N, Demaiffe D (2013) Nd–Hf isotope systematics of megacrysts from the Mbuji-Mayi kimberlites, D. R. Congo: evidence for a metasomatic origin related to kimberlite interaction with the cratonic lithospheric mantle. In: Pearson GD, Grütter SH, Harris WJ, Kjarsgaard AB, O’Brien H, Rao CNV, Sparks S (eds) Proceedings of the 10th International Kimberlite Conference. Springer, New Delhi, pp 123–136CrossRefGoogle Scholar
  56. Porritt LA, Cas RA (2011) The influence of complex intra-and extra-vent processes on facies characteristics of the Koala Kimberlite, NWT, Canada: volcanology, sedimentology and intrusive processes. Bull Volcanol 73(6):717–735CrossRefGoogle Scholar
  57. Read G, Grutter H, Winter S, Luckman N, Gaunt F, Thomsen F (2004) Stratigraphic relations, kimberlite emplacement and lithospheric thermal evolution, Quiricó Basin, Minas Gerais State, Brazil. Lithos 77(1):803–818CrossRefGoogle Scholar
  58. Russell JK, Porritt LA, Lavallee Y, Dingwell DB (2012) Kimberlite ascent by assimilation-fuelled buoyancy. Nature 481(7381):352–356CrossRefGoogle Scholar
  59. Sazonova LV, Nosova AA, Kargin AV, Borisovskiy SE, Tretyachenko VV, Abazova ZM, Griban’ YG (2015) Olivine from the Pionerskaya and V. Grib kimberlite pipes, Arkhangelsk diamond province, Russia: types, composition, and origin. Petrology 23(3):227–258CrossRefGoogle Scholar
  60. Shaikh AM, Kumar SP, Patel SC, Thakur SS, Ravi S, Behera D (2018) The P3 kimberlite and P4 lamproite, Wajrakarur kimberlite field, India: mineralogy, and major and minor element compositions of olivines as records of their phenocrystic vs xenocrystic origin. Miner Petrol, this volumeGoogle Scholar
  61. Shore M, Fowler AD (1996) Oscillatory zoning in minerals; a common phenomenon. Can Mineral 34(6):1111–1126Google Scholar
  62. Sobolev NV, Sobolev AV, Tomilenko AA, Kovyazin SV, Batanova VG, Kuz’min DV (2015) Paragenesis and complex zoning of olivine macrocrysts from unaltered kimberlite of the Udachnaya-East pipe, Yakutia: relationship with the kimberlite formation conditions and evolution. Russ Geol Geophys 56(1–2):260–279CrossRefGoogle Scholar
  63. Soltys A, Giuliani A, Phillips D, Kamenetsky VS, Maas R, Woodhead J, Rodemann T (2016) In-situ assimilation of mantle minerals by kimberlitic magmas – direct evidence from a garnet wehrlite xenolith entrained in the Bultfontein kimberlite (Kimberley, South Africa). Lithos 256:182–196CrossRefGoogle Scholar
  64. Soltys A, Giuliani A, Phillips D (2018a) A new approach to reconstructing the composition and evolution of kimberlite melts: a case study of the archetypal Bultfontein kimberlite (Kimberley, South Africa). Lithos 304–307:1–15CrossRefGoogle Scholar
  65. Soltys A, Giuliani A, Phillips D (2018b) Crystallisation and melt evolution of the De Beers dyke (Kimberley, South Africa). Miner Petrol, this volumeGoogle Scholar
  66. Stiefenhofer J (1989) Petrography, mineralogy and geochemistry of the Kaalvallei kimberlite pipe. Rhodes University, Grahamstown, South Africa, Orange Free State. B Sc Hons ThesisGoogle Scholar
  67. Stone RS, Luth RW (2016) Orthopyroxene survival in deep carbonatite melts: implications for kimberlites. Contrib Mineral Petr 171(7):1–9CrossRefGoogle Scholar
  68. Tappe S, Pearson DG, Nowell G, Nielsen T, Milstead P, Muehlenbachs K (2011) A fresh isotopic look at Greenland kimberlites: Cratonic mantle lithosphere imprint on deep source signal. Earth Planet Sc Lett 305(1–2):235–248CrossRefGoogle Scholar
  69. Taylor WR, Kingdom L (1999) Mineralogy of the Jagersfontein kimberlite - an unusual Group I micaceous kimberlite - and a comment on the robustness of the mineralogical definition of 'orangeite'. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) 7th Intern Kimb Conf, vol 2. Red Roof Design, Cape Town, pp 861–866Google Scholar
  70. Webb KJ, Crawford B, Nowicki TE, Hetman CM, Carlson J (2008) Coherent kimberlite at Ekati, Northwestern Territories, Canada: textural and geochemical variations and implications for emplacement. 9th Intern Kimb Conf. In: Ext Abstr 9IKC-A-00225Google Scholar
  71. Woodhead J, Hergt J, Giuliani A, Phillips D, Maas R (2017) Tracking continental-scale modification of the Earth’s mantle using zircon megacrysts. Geochem Persp Lett 4:1–6Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.KiDs (Kimberlites and Diamonds), School of Earth SciencesUniversity of MelbourneParkvilleAustralia
  2. 2.Australian Research Council Centre of Excellence for Core to Crust Fluid Systems (CCFS) and National Key Centre for Geochemical Evolution and Metallogeny of Continents (GEMOC), Department of Earth and Planetary SciencesMacquarie UniversityNorth RydeAustralia
  3. 3.Central Science LaboratoryUniversity of TasmaniaHobartAustralia

Personalised recommendations