Skip to main content
Log in

Geochemistry of garnet in pegmatites from the Boroujerd Intrusive Complex, Sanandaj-Sirjan Zone, western Iran: implications for the origin of pegmatite melts

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Pegmatite-hosted garnets from four localities in the Boroujerd region, Lorestan (Western Iran), have been analysed for major and selected trace element compositions. The mineral assemblage of the granitic pegmatites is primarily quartz, plagioclase (albite), and alkali feldspar (orthoclase-microcline), as well as garnet, muscovite, fluorapatite, tourmaline (schorl-foitite), andalusite and zircon. The mineralogical and geochemical characteristics of the pegmatites indicate that they are peraluminous to slightly metaluminous I-type granites. Based on mineral assemblages and whole-rock geochemistry, the pegmatites are classified as muscovite-type pegmatites. Electron-probe micro-analysis reveals that garnets have concentric compositional zoning and are almandine-spessartine solid solutions with lesser pyrope, grossular and andradite components. Concentric zoning of major elements in the garnet is attributed to magmatic growth from a melt. On a MnO + CaO versus FeO + MgO (wt%) plot, the composition of garnet is consistent with crystallisation from weakly to moderately evolved melts. The garnets from the Boroujerd pegmatites are characterised by decreasing Y, HREE, Ti, Zr, Nb, Ta, Hf, and U abundances from core to rim. The garnets also have high chondrite normalized HREE abundances with nearly flat patterns (YbN/SmN = 0–508), lower LREE contents, and negative Eu anomalies (Eu/Eu* < 0.3). Variation in these elements from core to rim is attributed to increasing magma fractionation. The composition and major and trace element zoning patterns in the garnet of the Boroujerd pegmatites are compatible with a magmatic origin and crystallisation from variably fractionated I-type magmas demonstrating that garnet crystal-chemistry is an important tool for deciphering the origins of pegmatite magmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abbott Jr RN (1981) AFM liquidus projection for granitic magmas, with special reference to hornblende, biotite and garnet. Can Mineral 19:103–110

    Google Scholar 

  • Agard P, Omrani J, Jolivet L, Mouthereau F (2005) Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. Int J Earth Sci 94:401–419

    Google Scholar 

  • Ahmadi Khalaji A, Esmaeily D, Valizadeh MV, Rahimpour-Bonab H (2007) Petrology and geochemistry of the Granitoid complex of Boroujerd, Sanandaj-Sirjan zone, western Iran. J Asian Earth Sci 29:859–877

    Google Scholar 

  • Alavi M (1994) Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics 229:211–238

    Google Scholar 

  • Allan BD, Clarke DB (1981) Occurrence and origin of garnets in the South Mountain batholith, Nova Scotia. Can Mineral 19:19–24

    Google Scholar 

  • Allen MB, Armstrong HA (2008) Arabia-Eurasia collision and the forcing of mid-Cenozoic global cooling. Palaeogeogr Palaeoclimatol Palaeoecol 265:52–58

    Google Scholar 

  • Arredondo EH, Rossman GR, Lumpkin GR (2001) Hydrogen in spessartine-almandine garnets as a tracer of granitic pegmatite evolution. Am Mineral 86:485–490

    Google Scholar 

  • Arvin M, Pan Y, Dargahi S, Malekizadeh A, Babaei A (2007) Petrochemistry of the Siah-Kuh granitoid stock southwest of Kerman, Iran: implications for initiation of Neotethys subduction. J Asian Earth Sci 30:474–489

    Google Scholar 

  • Axen GJ, Lam PS, Grove M, Stockli DF, Hassanzadeh J (2001) Exhumation of thewestcentral Alborz Mountains, Iran, Caspian subsidence, and collision-related tectonics. Geology 29:559–562

    Google Scholar 

  • Azizi H, Moinevaziri H (2009) Review of the tectonic setting of Cretaceous to Quaternary volcanism in northwestern Iran. J Geodyn 47:167–179

    Google Scholar 

  • Bagheri S, Stampfli GM (2008) The Anarak, Jandaq and Posht-e-Badam metamorphic complexes in central Iran: new geological data, relationships and tectonic implications. Tectonophysics 451:123–155

    Google Scholar 

  • Baldwin JR, von Knorring O (1983) Compositional range of Mn-garnet in zoned granitic pegmatites. Can Mineral 21:683–688

    Google Scholar 

  • Baxter EF, Caddick MJ, Ague JJ (2013) Garnet: common mineral, uncommonly useful. Elements 9:415–419

    Google Scholar 

  • Bea F (1996) Residence of REE, Y, Th and U in granites and crustal protoliths; implications for the chemistry of crustal melts. J Petrol 37:521–552

    Google Scholar 

  • Bea F, Pereira MD, Stroh A (1994) Mineral/leucosome trace element partitioning in a peraluminous migmatite (a laser ablation- ICP-MS study). Chem Geol 117:291–312

    Google Scholar 

  • Berberian M (1983) Generalized tectonic map of Iran. In: Berberian, M. (Ed.), Continental deformation in the Iranian plateau. Geological survey of Iran, Report No. 52

  • Berberian F, Berberian M (1981) Tectono-plutonic episodes in Iran. In: Gupta, H.K., Delany, F.M. (Eds.), Zagros–Hindu Kush–Himalaya Geodynamic Evolution: American Geophysical Union, Geodynamics Series 3:5–32

  • Berberian M, King GCP (1981) Towards a paleogeography and tectonic evolution of Iran. Can J Earth Sci 18:201–265

    Google Scholar 

  • Bogoch R, Bourne J, Shirav M, Harnois L (1997) Petrochemistry of a Late Precambrian garnetiferous granite, pegmatite and aplite, southern Israel. Mineral Mag 61:111–122

    Google Scholar 

  • Brown EH, Babcock RS, Clark MD (1979) Geology of Precambrian rocks of Grand Canyon: in petrology and structure of Vishu complex. Precambrian Res 8:219–241

    Google Scholar 

  • Carswell DA, Dawson JB (1970) Garnet peridotite xenoliths in South African kimberlite pipes and their petrogenesis. Contrib Mineral Petrol 25(3):163–184

    Google Scholar 

  • Černý P (1989) Exploration strategy and methods for pegmatite deposits of tantalum; in lanthanides, tantalum and niobium. Springer-Verlag, New York, 274–302

    Google Scholar 

  • Černý P, Ercit TS (2005) The classification of granitic pegmatites revisited. Can Mineral 43:2005–2026

    Google Scholar 

  • Černý P, Hawthorne FC (1982) Selected peraluminous minerals. In P. Černý, Ed, Granitic pegmatites in science and industry. Mineralogical Association of Canada, Short Course Handbook 8:163–186

  • Černý P, Meintzer RE, Anderson AJ (1985) Extreme fractionation in rare-element granitic pegmatites: selected examples of data and mechanism. Can Mineral 23:381–421

    Google Scholar 

  • Chappell BW, White AJR (1974) Two contrasting granite types. Pac Geol 8:173–174

    Google Scholar 

  • Chappell BW, White AJR (1992) I- and S-type granites in the Lachlan Fold Belt. Trans R Soc Edinb Earth Sci 83:1–26

    Google Scholar 

  • Chappell BW, White AJR (2001) Two contrasting granite types: 25 years later, Australian. J Earth Sci 48:489–499

    Google Scholar 

  • Clemens JD, Wall VJ (1981) Origin and crystallization of some peraluminous (S-type) granitic magmas. Can Mineral 10:111–131

    Google Scholar 

  • Dahlquist JA, Galindo C, Pankhurst RJ, Rapela CW, Alasino PH (2007) Magmatic evolution of the Peñón Rosado granite: petrogenesis of garnet-bearing granitoids. Lithos 95:177–207

    Google Scholar 

  • Dargahi S, Arvin M, Pan Y, Babaei A (2010) Petrogenesis of post-collisional A-type granitoids from the Urumieh–Dokhtar magmatic assemblage, Southwestern Kerman, Iran: constraints on the Arabian–Eurasian continental collision. Lithos 115:190–204

    Google Scholar 

  • Day RA, Green TH, Smith I (1992) The origin and significance of garnet phenocrysts and garnet-bearing xenoliths in Miocene calcalkaline volcanics from Northland, New-Zealand. J Petrol 33:125–161

    Google Scholar 

  • Ding X, Hu YH, Zhang H, Li CY, Ling MX, Sun WD (2013) Major Nb/Ta fractionation recorded in garnet amphibolite facies metagabbro. J Geol 121(3):255–274

    Google Scholar 

  • Dorais MJ, Tubrett M (2012) Detecting peritectic garnet in the peraluminous Cardigan Pluton, New Hampshire. J Petrol 53:299–324

    Google Scholar 

  • du Bray EA (1988) Garnet compositions and their use as indicators of peraluminous granitoid paragenesis-southern Arabian shield. Contrib Mineral Petrol 100:205–212

    Google Scholar 

  • Fitton JG (1972) The genetic significance of almandine-pyrope phenocrysts in the calc-alkaline Borrowdale Volcanic Group, northern England. Contrib Mineral Petrol 36:231–248

    Google Scholar 

  • Gadas P, Novák M, Talla D, Galiová MV (2013) Compositional evolution of grossular garnet from leucotonalitic pegmatite at Ruda nad Moravou, Czech Republic; a complex EMPA, LA-ICP-MS, IR and CL study. Mineral Petrol 107:311–326

    Google Scholar 

  • Gaspar M, Knaack C, Meinert L, Moretti D (2008) REE in skarn systems: a LA-ICP-MS study of garnets from the Crown Jewel gold deposit. Geochim Cosmochim Acta 72:185–205

    Google Scholar 

  • Gharib ME (2012) Origin and evolution history of magmatic garnet-bearing pegmatites and associated granitoids, Abu Had Area, South Eastern Desert, Egypt: inference from petrology and geochemistry. J Am Sci 8(10):536–554

    Google Scholar 

  • Grant JA, Weiblen PW (1971) Retrograde zoning in garnet near the second sillimanite isograd. Am J Sci 270:281–296

    Google Scholar 

  • Green TH (1977) Garnet in silicic liquids and its possible use as a P–T indicator. Contrib Mineral Petrol 65:59–67

    Google Scholar 

  • Green TH (1978) A model for the formation and crystallization of corundum-normative calc-alkaline magmas through amphibole fractionation: a discussion. J Geol 86:269–272

    Google Scholar 

  • Green TH (1992) Experimental phase equilibrium studies of garnet-bearing I-type volcanic and high-level intrusive from Northland, New Zealand. Trans R Soc Edinb Earth Sci 83:429–438

    Google Scholar 

  • Green TH, Ringwood AE (1968) Origin of garnet phenocrysts in calc-alkaline rocks. Contrib Mineral Petrol 18:163–174

    Google Scholar 

  • Green TH, Blundy JD, Adam J (2000) SIMS determination of trace element partition coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2–7.5 GPa and 1080–1200°C. Lithos 53:165–187

    Google Scholar 

  • Grew ES, Locock AJ, Mills SJ, Galuskina IO, Galuskin EV, Hålenius U (2013) IMA report. Nomenclature of the garnet supergroup. Am Mineral 98:785–811

    Google Scholar 

  • Guest B, Stockli DF, Grove M, Axen GJ, Lam PS (2006) Thermal histories from the central Alborz Mountains, northern Iran: implications for the spatial and temporal distribution of deformation in northern Iran. Geol Soc Am Bull 118:1507–1521

    Google Scholar 

  • Habler G, Thöni M, Miller C (2007) Major and trace element chemistry and Sm–Nd age correlation of magmatic pegmatite garnet overprinted by eclogite-facies metamorphism. Chem Geol 241:4–22

    Google Scholar 

  • Hajmolla Ali A, Sahandi MR (1992) Geologic map of Khorramabad 1:250000 survey sheet. Geological Survey of Iran

    Google Scholar 

  • Harangi SZ, Downes H, Ko’sa L, Szabo' CS, Thirlwall MF, Mason PRD (2001) Almandine garnet in calc-alkaline volcanic rocks of the Northern Pannonian Basin (Eastern-Central Europe): geochemistry, petrogenesis and geodynamic implications. J Petrol 42:1813–1843

    Google Scholar 

  • Harris NBW, Gravestock P, Inger S (1992) Ion-microprobe determinations of trace-element concentrations in garnets from anatectic assemblages. Chem Geol 100:41–49

    Google Scholar 

  • Hattori KH, Guillot S, Saumur BM, Tubrett MN, Vidal O, Morfin S (2010) Corundum-bearing garnet peridotite from northern Dominican Republic: a metamorphic product of an arc cumulate in the Caribbean subduction zone. Lithos 114:437–450

    Google Scholar 

  • Heimann A (2015) The chemical composition of gahnite and garnet as exploration guides to and indicators of rare element (Li) granitic pegmatites. U.S. Geological Survey, Open-File Report 1–24

  • Hönig S, Leichmann J, Novosád T (2012) Garnet-bearing layered anorogenous granites and pegmatites of Hlína suite inside Brunovistulicum, structures and field occurrences. J Geosciences 19(1–2):153–156

    Google Scholar 

  • Horton BK, Hassanzadeh J, Stockli DF, Axen GJ, Gillis RJ, Guest B, Amini A, Fakhari MD, Zamanzadeh SM, Grove M (2008) Detrital zircon provenance of Neoproterozoic to Cenozoic deposits in Iran: implications for chronostratigraphy and collisional tectonics. Tectonophysics 451:97–122

    Google Scholar 

  • Hsu LC (1968) Selected phase relationships in the system Al-Mn-Fe-Si-O-H, a model for garnet equilibria. J Petrol 9:40–83

    Google Scholar 

  • Hutchison CS (1974) Laboratory handbook of petrographic techniques. Wiley, 527

  • Irving AJ, Frey FA (1978) Distribution of trace-elements between garnet megacrysts and host volcanic liquids of Kimberlite to Rhyolitic composition. Geochim Cosmochim Acta 42:771–787

    Google Scholar 

  • Kano H, Yashima R (1997) Almandine-garnets of acid magmatic origin from Yamanogawa, Fukushima prefecture and Kamitazawa, Yamagata prefecture. Journal of the Japanese Association: J Petrol Mineral Econ Geol 71:106–119

    Google Scholar 

  • Kerrick DM (1972) Experimental determination of muscovite+quartz stabiliy with pH2O<ptotal. Am J Sci 272:946–958

    Google Scholar 

  • Kleck W, Foord E (1999) The chemistry, mineralogy, and petrology of the George Ashley Block pegmatite body. Am Mineral 84:695–707

    Google Scholar 

  • Lévy CM (1951) Reproduction artificielle de garnets ferro-manganésifères série almandine-spessartine. CRASP 232:1953

    Google Scholar 

  • Li XH, Li ZX, Li WX, Liu Y, Yuan C, Wei GJ, Qi CS (2007) U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I- and A-type granites from central Guangdong, SE China: a major igneous event in response to foundering of a subducted flat-slab? Lithos 96:186–204

    Google Scholar 

  • Li CY, Zhang RQ, Ding X, Ling MX, Fan WM, Sun WD (2016) Dating cassiterite using laser ablation ICP-MS. Ore Geol Rev 72(1):313–322

    Google Scholar 

  • Liang JL, Ding X, Sun XM, Zhang ZM, Zhang H, Sun WD (2009) Nb/Ta fractionation observed in eclogites from the Chinese Continental Scientific Drilling Project. Chem Geol 268:27–40

    Google Scholar 

  • Lima SM, Neiva AMR, Ramos JMF (2013) Characterization and origin of “common pegmatites”: the case of intragranitic dikes from the Pavia pluton (western Ossa-Morena Zone, Portugal). Proceeding of the 6th International Symposium on Granitic Pegmatites (New Hampshire and Maine, USA), 79–80

  • London D (2008) Pegmatites. Mineralogical Association of Canada – MAC Special Publications 19:368

  • Ma JL, Wei GJ, Xu YG, Long WG, Sun WD (2007) Mobilization and re-distribution of major and trace elements during extreme weathering of basalt in Hainan Island, South China. Geochim Cosmochim Acta 71:3223–3237

    Google Scholar 

  • Manning DAC (1983) Chemical variation in garnets from aplites and pegmatites, peninsular Thailand. Mineral Mag 47:353–358

    Google Scholar 

  • Masoudi F (1997) Contact metamorphism and pegmatite development in the SW of Arak, Iran. Ph.D. dissertation, University of Leeds, UK

  • Masoudi F, Yardley BWD, Cliff RA (2002) Rb-Sr geochronology of pegmatites, plutonic rocks and a hornfels in the region southwest of Arak, Iran. J Sci 13:249–254

    Google Scholar 

  • Mazhari SA, Bea F, Amini S, Ghalamghash J, Molina JF, Montero P, Scarrow JH, Williams IS (2009) The Eocene bimodal Piranshahr massif of the Sanandaj–Sirjan Zone, NW Iran: a marker of the end of the collision in the Zagros orogen. J Geol Soc Lond 166:53–69

    Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253

    Google Scholar 

  • McQuarrie N, Stock JM, Verdel C, Wernicke BP (2003) Cenozoic evolution of Neotethys and implications for the causes of plate motions. Geophys Res Lett 30(20):2036

    Google Scholar 

  • Miller CF, Stoddard EF (1981) The role of manganese in the paragenesis of magmatic garnet: an example from the Old Woman Piute Range, California. J Geol 89:233–246

    Google Scholar 

  • Mohajjel M (1997) Structure and tectonic evolution of Palaeozoic–Mesozoic rocks, Sanandaj–Sirjan Zone, Western Iran. Ph.D. dissertation, University of Wollongong, Australia

  • Mohajjel M, Fergusson CL (2000) Dextral transpression in Late Cretaceous continental collision, Sanandaj–Sirjan zone, Western Iran. J Struct Geol 22:1125–1139

    Google Scholar 

  • Mohajjel M, Fergusson CL, Sahandi MR (2003) Cretaceous–Tertiary convergence and continental collision, Sanandaj–Sirjan Zone, western Iran. J Asian Earth Sci 21:397–412

    Google Scholar 

  • Moretz L, Heimann A, Bitner J, Wise M, Rodrigues Soares D, Mousinho Ferreira A (2013) The composition of garnet as indicator of rare metal (Li) mineralization in granitic pegmatites. Proceeding of The 6th International Symposium on Granitic Pegmatites, 94–95

  • Müller A, Kaersley A, Spratt J, Seltmann R (2012) Petrogenetic implications of magmatic garnet in granitic pegmatites from southern Norway. Can Mineral 50:1095–1115

    Google Scholar 

  • Nezafati N (2006) Au-Sn-W-Cu mineralization in the Astaneh-Sarband area, west Central Iran: including a comparison of the ores with ancient bronze artifacts from western Asia, Ph.D. dissertation, Eberhard-Karls University, Germany

  • Okay AI, Zattin M, Cavazza W (2010) Apatite fission-track data for the Miocene Arabia-Eurasia collision. Geology 38:35–38

    Google Scholar 

  • Patranabis-Deb A, Schieber J, Basu A (2008) Almandine garnet phenocrysts in a 1Ga rhyolitic tuff from Central India. Geol Mag 146(1):133–143

    Google Scholar 

  • Pattison DRM (1992) Stability of andalusite and sillimanite and the Al2SiO5 triple point: constraints form the Ballachulish aureole, Scotland. J Geol 100:423–446

    Google Scholar 

  • Pieczka A, Szuszkiewicz A, Szełęg E, Nejbert K, Łodziński M, Ilnicki S, Turniak K, Banach M, Hołub W, Michałowski P, Różniak R (2013) (Fe,Mn)–(Ti,Sn)–(Nb,Ta) oxide assemblage in a little fractionated portion of a mixed (NYF + LCT) pegmatite from Piława Górna, the Sowie Mts. block, SW Poland. J Geosci 58:91–112

    Google Scholar 

  • Ravna EJK, Kullerud K, Ellingsen E (2006) Prograde garnet-bearing ultramafic rocks from the Tromsø Nappe, northern Scandinavian Caledonides. Lithos 92:336–356

    Google Scholar 

  • René M, Stelling J (2007) Garnet-bearing granite from the Třebĭč pluton, Bohemian massif (Czech Republic). Mineral Petrol 91:55–69

    Google Scholar 

  • Ricou LE (1994) Tethys reconstructed: plates, continental fragments and their boundaries since 260 Ma from Central America to south-eastern Asia. Geodin Acta (Paris) 7:169–218

    Google Scholar 

  • Ricou LE, Braud J, Brunn JA (1977) Le Zagros. Soc. Géol. Fr. Mém. 8:33–52

    Google Scholar 

  • Rost F, Beermann E, Amthauer G (1975) Chemical investigation of pyrope garnet in the Stockdale Kimberlite intrusion, Riley County, Kansas. Am Mineral 60:675–680

    Google Scholar 

  • Samadi R, Miller NR, Mirnejad H, Harris C, Kawabata H, Shirdashtzadeh N (2014) Origin of garnet in aplite and pegmatite from Khajeh Morad in northeastern Iran: a major, trace element, and oxygen isotope approach. Lithos 208-209:378–392

    Google Scholar 

  • Sevigny JH (1993) Monazite controlled Sm/Nd fractionation in leucogranites: an ion microprobe study of garnet phenocrysts. Geochim Cosmochim Acta 57:4095–4102

    Google Scholar 

  • Shaw RA, Goodenough KM, Roberts NMW, Horstwood MSA, Chenery SR, Gunn AG (2016) Petrogenesis of rare-metal pegmatites in high-grade metamorphic terranes: a case study from the Lewisian Gneiss Complex of north-west Scotland. Precambrian Res 281:338–362

    Google Scholar 

  • Simmons WB, Webber KL (2008) Pegmatite genesis: state of the art. Eur J Mineral 20:421–438

    Google Scholar 

  • Sîrbu S, Buzgar N, Kasper HU (2010) Geochemistry of selected garnets in pegmatites from Răzoare formation (Preluca Mountains, Romania). Geology 56:109–121

    Google Scholar 

  • Smeds SA (1994) Zoning and fractionation trends of a peraluminous NYF granitic pegmatite field at Falun, south-central Sweden. GFF 116(3):175–184

    Google Scholar 

  • Sokoutis D, Bonini M, Medvedev S, Boccaletti M, Talbot CJ, Koyi H (2000) Indentation of a continent with a built-in thickness change: experiment and nature. Tectonophysics 320:243–270

    Google Scholar 

  • Stöcklin J (1968) Structural history and tectonics of Iran; a review. Am Assoc Pet Geol Bull 52:1229–1285

    Google Scholar 

  • Swanson SE, Veal WB (2010) Mineralogy and petrogenesis of pegmatites in the Spruce Pine District, North Carolina, USA. J Geosci 55:27–42

    Google Scholar 

  • Thöni M, Miller C (2000) Permo-Triassic pegmatites in the eo-Alpine eclogite-facies Koralpe complex, Austria: age and magma source constraints from mineral chemical, Rb–Sr and Sm–Nd isotope data. Schweiz Mineral Petrogr Mitt 80(2):169–186

    Google Scholar 

  • Thöni M, Miller C (2004) Ordovician meta-pegmatite garnet (NW Ötztal basement, Tyrol, Eastern Alps): preservation of magmatic garnet chemistry and Sm-Nd age during mylonitization. Chem Geol 209:1–26

    Google Scholar 

  • Thöni M, Miller C, Zanetti A, Habler G, Goessler W (2008) Sm–Nd isotope systematics of high-REE accessory minerals and major phases: ID-TIMS, LA-ICP-MS and EPMA data constrain multiple Permian–Triassic pegmatite emplacement in the Koralpe, Eastern Alps. Chem Geol 254:216–237

    Google Scholar 

  • Thöni M, Miller C, Hager C, Grasemann B, Horschinegg M (2012) New geochronological constraints on the thermal and exhumation history of the Lesser and Higher Himalayan Crystalline Units in the Kullu–Kinnaur area of Himachal Pradesh (India). J Asian Earth Sci 52:98–116

    Google Scholar 

  • Uher P, Janák M, Konečný P, Vrabec M (2014) Rare-element granitic pegmatite of Miocene age emplaced in UHP rocks from Visole, Pohorje Mountains (Eastern Alps, Slovenia): accessory minerals, monazite and uraninite chemical dating. Geol Carpath 65(2):131–146

    Google Scholar 

  • Villaseca C,  Martı́n Romera C,  De la Rosa J,  Barbero L (2003) Residence and redistribution of REE, Y, Zr, Th and U during granulite-facies metamorphism: behaviour of accessory and major phases in peraluminous granulites of central Spain. Chem Geol 200(3–4):293–323

    Google Scholar 

  • Vincent SJ, Allen MB, Ismail-Zadeh AD, Flecker R, Foland KA, Simmons MD (2005) Insights from the Talysh of Azerbaijan into the Paleogene evolution of the South Caspian region. Geol Soc Am Bull 117:1513–1533

    Google Scholar 

  • Wang RC, Fontan F, Chen XM, Hu H, Liu CS, Xu SJ, De Parseval P (2003) Accessory minerals in the Xihuashan Y-enriched granitic complex, southern China: a record of magmatic and hydrothermal stages of evolution. Can Mineral 41:727–748

    Google Scholar 

  • Weisbrod A (1974) Étude experimentale de l'équilibre grenat-cordiérite dans le système Mn-Fe-Al-Si-O-H, à 750°C. Implications thermodynamiques et pétrologiques Bulletin de la Société Française Minéralogie et de Cristallographie 97:261–270

    Google Scholar 

  • Whitworth MP (1992) Petrogenetic implications of garnets associated with lithium pegmatites from SE Ireland. Mineral Mag 56:75–83

    Google Scholar 

  • Whitworth MP, Feely M (1994) The compositional range of magmatic Mn-garnets in Galway Granite, Connemara, Ireland. Mineral Mag 58:163–168

    Google Scholar 

  • Wilmsen M, Fürsich FT, Seyed-Emami K, Majidifard MR, Taheri J (2009) The Cimmerian Orogeny in northern Iran: tectono-stratigraphic evidence from the foreland. Terra Nova 21:211–218

    Google Scholar 

  • Wise MA, Brown CD (2010) Mineral chemistry, petrology and geochemistry of the Sebago granite–pegmatite system, southern Maine, USA. J Geosci 55:3–26

    Google Scholar 

  • Wu FY, Sun DY, Jahn BM, Wilde SA (2004) A Jurassic garnet-bearing granitic pluton from NE China showing tetrad REE patterns. J Asian Earth Sci 23:731–744

    Google Scholar 

  • Yuan C, Sun M, Xiao W, Wilde S, Li X, Liu X, Long X, Xia X, Ye K, Li J (2008) Garnet-bearing tonalitic porphyry from East Kunlun, Northeast Tibetan Plateau: implications for adakite and magmas from the MASH zone. Int J Earth Sci (Geologische Rundschau) 98(6):1489–1510

    Google Scholar 

  • Zhang C, Gieré R, Stünitz H, Brack P, Ulmer P (2001) Garnet-quartz intergrowths in granitic pegmatites from Bergell and Adamello, Italy. Schweiz Mineral Petrogr Mitt 81:89–113

    Google Scholar 

  • Zhang L, Zhong Z, Zhang H, Sun W, Xiang H (2009) The formation of foliated (garnet-bearing) granites in the Tongbai-Dabie orogenic belt: partial melting of subducted continental crust during exhumation. J Metamorph Geol 27:789–803

    Google Scholar 

  • Zhang J, Ma C, She Z (2012) An Early Cretaceous garnet-bearing metaluminous A-type granite intrusion in the East Qinling Orogen, Central China: petrological, mineralogical and geochemical constraints. Geosci Front 3:635–646

    Google Scholar 

Download references

Acknowledgements

This study was conducted as a part of the Ph.D. dissertation of S. Rahmani Javanmard. The authors wish to thank J. H. Zhu (at the Second Institute of Oceanography, the State Oceanic Administration of China) for help with electron microprobe analysis. Many thanks to reviewers for their detailed and constructive comments that greatly improved the final version of the manuscript. M.A.T.M. Broekmans and A. Moeller are thanked for careful and useful suggestions and efficient handling throughout the review and publication process. This research was financially supported by the National Key R&D Program of China (2016YFC0600408) and the Natural Science Foundation of China (41421062).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zahra Tahmasbi or Xing Ding.

Additional information

Editorial handling: A. Möller

Electronic supplementary material

ESM 1

(DOCX 131 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani Javanmard, S., Tahmasbi, Z., Ding, X. et al. Geochemistry of garnet in pegmatites from the Boroujerd Intrusive Complex, Sanandaj-Sirjan Zone, western Iran: implications for the origin of pegmatite melts. Miner Petrol 112, 837–856 (2018). https://doi.org/10.1007/s00710-018-0591-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-018-0591-x

Keywords

Navigation