Geochemistry of garnet in pegmatites from the Boroujerd Intrusive Complex, Sanandaj-Sirjan Zone, western Iran: implications for the origin of pegmatite melts

  • Somayeh Rahmani Javanmard
  • Zahra Tahmasbi
  • Xing Ding
  • Ahmad Ahmadi Khalaji
  • Callum J. Hetherington
Original Paper


Pegmatite-hosted garnets from four localities in the Boroujerd region, Lorestan (Western Iran), have been analysed for major and selected trace element compositions. The mineral assemblage of the granitic pegmatites is primarily quartz, plagioclase (albite), and alkali feldspar (orthoclase-microcline), as well as garnet, muscovite, fluorapatite, tourmaline (schorl-foitite), andalusite and zircon. The mineralogical and geochemical characteristics of the pegmatites indicate that they are peraluminous to slightly metaluminous I-type granites. Based on mineral assemblages and whole-rock geochemistry, the pegmatites are classified as muscovite-type pegmatites. Electron-probe micro-analysis reveals that garnets have concentric compositional zoning and are almandine-spessartine solid solutions with lesser pyrope, grossular and andradite components. Concentric zoning of major elements in the garnet is attributed to magmatic growth from a melt. On a MnO + CaO versus FeO + MgO (wt%) plot, the composition of garnet is consistent with crystallisation from weakly to moderately evolved melts. The garnets from the Boroujerd pegmatites are characterised by decreasing Y, HREE, Ti, Zr, Nb, Ta, Hf, and U abundances from core to rim. The garnets also have high chondrite normalized HREE abundances with nearly flat patterns (YbN/SmN = 0–508), lower LREE contents, and negative Eu anomalies (Eu/Eu* < 0.3). Variation in these elements from core to rim is attributed to increasing magma fractionation. The composition and major and trace element zoning patterns in the garnet of the Boroujerd pegmatites are compatible with a magmatic origin and crystallisation from variably fractionated I-type magmas demonstrating that garnet crystal-chemistry is an important tool for deciphering the origins of pegmatite magmas.


Boroujerd Intrusive Complex Geochemistry Iran Almandine-spessartine garnet Pegmatite Rare earth elements 



This study was conducted as a part of the Ph.D. dissertation of S. Rahmani Javanmard. The authors wish to thank J. H. Zhu (at the Second Institute of Oceanography, the State Oceanic Administration of China) for help with electron microprobe analysis. Many thanks to reviewers for their detailed and constructive comments that greatly improved the final version of the manuscript. M.A.T.M. Broekmans and A. Moeller are thanked for careful and useful suggestions and efficient handling throughout the review and publication process. This research was financially supported by the National Key R&D Program of China (2016YFC0600408) and the Natural Science Foundation of China (41421062).

Supplementary material

710_2018_591_MOESM1_ESM.docx (131 kb)
ESM 1 (DOCX 131 kb)


  1. Abbott Jr RN (1981) AFM liquidus projection for granitic magmas, with special reference to hornblende, biotite and garnet. Can Mineral 19:103–110Google Scholar
  2. Agard P, Omrani J, Jolivet L, Mouthereau F (2005) Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. Int J Earth Sci 94:401–419CrossRefGoogle Scholar
  3. Ahmadi Khalaji A, Esmaeily D, Valizadeh MV, Rahimpour-Bonab H (2007) Petrology and geochemistry of the Granitoid complex of Boroujerd, Sanandaj-Sirjan zone, western Iran. J Asian Earth Sci 29:859–877CrossRefGoogle Scholar
  4. Alavi M (1994) Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics 229:211–238CrossRefGoogle Scholar
  5. Allan BD, Clarke DB (1981) Occurrence and origin of garnets in the South Mountain batholith, Nova Scotia. Can Mineral 19:19–24Google Scholar
  6. Allen MB, Armstrong HA (2008) Arabia-Eurasia collision and the forcing of mid-Cenozoic global cooling. Palaeogeogr Palaeoclimatol Palaeoecol 265:52–58CrossRefGoogle Scholar
  7. Arredondo EH, Rossman GR, Lumpkin GR (2001) Hydrogen in spessartine-almandine garnets as a tracer of granitic pegmatite evolution. Am Mineral 86:485–490CrossRefGoogle Scholar
  8. Arvin M, Pan Y, Dargahi S, Malekizadeh A, Babaei A (2007) Petrochemistry of the Siah-Kuh granitoid stock southwest of Kerman, Iran: implications for initiation of Neotethys subduction. J Asian Earth Sci 30:474–489CrossRefGoogle Scholar
  9. Axen GJ, Lam PS, Grove M, Stockli DF, Hassanzadeh J (2001) Exhumation of thewestcentral Alborz Mountains, Iran, Caspian subsidence, and collision-related tectonics. Geology 29:559–562CrossRefGoogle Scholar
  10. Azizi H, Moinevaziri H (2009) Review of the tectonic setting of Cretaceous to Quaternary volcanism in northwestern Iran. J Geodyn 47:167–179CrossRefGoogle Scholar
  11. Bagheri S, Stampfli GM (2008) The Anarak, Jandaq and Posht-e-Badam metamorphic complexes in central Iran: new geological data, relationships and tectonic implications. Tectonophysics 451:123–155CrossRefGoogle Scholar
  12. Baldwin JR, von Knorring O (1983) Compositional range of Mn-garnet in zoned granitic pegmatites. Can Mineral 21:683–688Google Scholar
  13. Baxter EF, Caddick MJ, Ague JJ (2013) Garnet: common mineral, uncommonly useful. Elements 9:415–419CrossRefGoogle Scholar
  14. Bea F (1996) Residence of REE, Y, Th and U in granites and crustal protoliths; implications for the chemistry of crustal melts. J Petrol 37:521–552CrossRefGoogle Scholar
  15. Bea F, Pereira MD, Stroh A (1994) Mineral/leucosome trace element partitioning in a peraluminous migmatite (a laser ablation- ICP-MS study). Chem Geol 117:291–312CrossRefGoogle Scholar
  16. Berberian M (1983) Generalized tectonic map of Iran. In: Berberian, M. (Ed.), Continental deformation in the Iranian plateau. Geological survey of Iran, Report No. 52Google Scholar
  17. Berberian F, Berberian M (1981) Tectono-plutonic episodes in Iran. In: Gupta, H.K., Delany, F.M. (Eds.), Zagros–Hindu Kush–Himalaya Geodynamic Evolution: American Geophysical Union, Geodynamics Series 3:5–32Google Scholar
  18. Berberian M, King GCP (1981) Towards a paleogeography and tectonic evolution of Iran. Can J Earth Sci 18:201–265Google Scholar
  19. Bogoch R, Bourne J, Shirav M, Harnois L (1997) Petrochemistry of a Late Precambrian garnetiferous granite, pegmatite and aplite, southern Israel. Mineral Mag 61:111–122CrossRefGoogle Scholar
  20. Brown EH, Babcock RS, Clark MD (1979) Geology of Precambrian rocks of Grand Canyon: in petrology and structure of Vishu complex. Precambrian Res 8:219–241CrossRefGoogle Scholar
  21. Carswell DA, Dawson JB (1970) Garnet peridotite xenoliths in South African kimberlite pipes and their petrogenesis. Contrib Mineral Petrol 25(3):163–184CrossRefGoogle Scholar
  22. Černý P (1989) Exploration strategy and methods for pegmatite deposits of tantalum; in lanthanides, tantalum and niobium. Springer-Verlag, New York, 274–302Google Scholar
  23. Černý P, Ercit TS (2005) The classification of granitic pegmatites revisited. Can Mineral 43:2005–2026CrossRefGoogle Scholar
  24. Černý P, Hawthorne FC (1982) Selected peraluminous minerals. In P. Černý, Ed, Granitic pegmatites in science and industry. Mineralogical Association of Canada, Short Course Handbook 8:163–186Google Scholar
  25. Černý P, Meintzer RE, Anderson AJ (1985) Extreme fractionation in rare-element granitic pegmatites: selected examples of data and mechanism. Can Mineral 23:381–421Google Scholar
  26. Chappell BW, White AJR (1974) Two contrasting granite types. Pac Geol 8:173–174Google Scholar
  27. Chappell BW, White AJR (1992) I- and S-type granites in the Lachlan Fold Belt. Trans R Soc Edinb Earth Sci 83:1–26CrossRefGoogle Scholar
  28. Chappell BW, White AJR (2001) Two contrasting granite types: 25 years later, Australian. J Earth Sci 48:489–499Google Scholar
  29. Clemens JD, Wall VJ (1981) Origin and crystallization of some peraluminous (S-type) granitic magmas. Can Mineral 10:111–131Google Scholar
  30. Dahlquist JA, Galindo C, Pankhurst RJ, Rapela CW, Alasino PH (2007) Magmatic evolution of the Peñón Rosado granite: petrogenesis of garnet-bearing granitoids. Lithos 95:177–207CrossRefGoogle Scholar
  31. Dargahi S, Arvin M, Pan Y, Babaei A (2010) Petrogenesis of post-collisional A-type granitoids from the Urumieh–Dokhtar magmatic assemblage, Southwestern Kerman, Iran: constraints on the Arabian–Eurasian continental collision. Lithos 115:190–204CrossRefGoogle Scholar
  32. Day RA, Green TH, Smith I (1992) The origin and significance of garnet phenocrysts and garnet-bearing xenoliths in Miocene calcalkaline volcanics from Northland, New-Zealand. J Petrol 33:125–161CrossRefGoogle Scholar
  33. Ding X, Hu YH, Zhang H, Li CY, Ling MX, Sun WD (2013) Major Nb/Ta fractionation recorded in garnet amphibolite facies metagabbro. J Geol 121(3):255–274CrossRefGoogle Scholar
  34. Dorais MJ, Tubrett M (2012) Detecting peritectic garnet in the peraluminous Cardigan Pluton, New Hampshire. J Petrol 53:299–324CrossRefGoogle Scholar
  35. du Bray EA (1988) Garnet compositions and their use as indicators of peraluminous granitoid paragenesis-southern Arabian shield. Contrib Mineral Petrol 100:205–212CrossRefGoogle Scholar
  36. Fitton JG (1972) The genetic significance of almandine-pyrope phenocrysts in the calc-alkaline Borrowdale Volcanic Group, northern England. Contrib Mineral Petrol 36:231–248CrossRefGoogle Scholar
  37. Gadas P, Novák M, Talla D, Galiová MV (2013) Compositional evolution of grossular garnet from leucotonalitic pegmatite at Ruda nad Moravou, Czech Republic; a complex EMPA, LA-ICP-MS, IR and CL study. Mineral Petrol 107:311–326CrossRefGoogle Scholar
  38. Gaspar M, Knaack C, Meinert L, Moretti D (2008) REE in skarn systems: a LA-ICP-MS study of garnets from the Crown Jewel gold deposit. Geochim Cosmochim Acta 72:185–205CrossRefGoogle Scholar
  39. Gharib ME (2012) Origin and evolution history of magmatic garnet-bearing pegmatites and associated granitoids, Abu Had Area, South Eastern Desert, Egypt: inference from petrology and geochemistry. J Am Sci 8(10):536–554Google Scholar
  40. Grant JA, Weiblen PW (1971) Retrograde zoning in garnet near the second sillimanite isograd. Am J Sci 270:281–296CrossRefGoogle Scholar
  41. Green TH (1977) Garnet in silicic liquids and its possible use as a P–T indicator. Contrib Mineral Petrol 65:59–67CrossRefGoogle Scholar
  42. Green TH (1978) A model for the formation and crystallization of corundum-normative calc-alkaline magmas through amphibole fractionation: a discussion. J Geol 86:269–272CrossRefGoogle Scholar
  43. Green TH (1992) Experimental phase equilibrium studies of garnet-bearing I-type volcanic and high-level intrusive from Northland, New Zealand. Trans R Soc Edinb Earth Sci 83:429–438CrossRefGoogle Scholar
  44. Green TH, Ringwood AE (1968) Origin of garnet phenocrysts in calc-alkaline rocks. Contrib Mineral Petrol 18:163–174CrossRefGoogle Scholar
  45. Green TH, Blundy JD, Adam J (2000) SIMS determination of trace element partition coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2–7.5 GPa and 1080–1200°C. Lithos 53:165–187CrossRefGoogle Scholar
  46. Grew ES, Locock AJ, Mills SJ, Galuskina IO, Galuskin EV, Hålenius U (2013) IMA report. Nomenclature of the garnet supergroup. Am Mineral 98:785–811CrossRefGoogle Scholar
  47. Guest B, Stockli DF, Grove M, Axen GJ, Lam PS (2006) Thermal histories from the central Alborz Mountains, northern Iran: implications for the spatial and temporal distribution of deformation in northern Iran. Geol Soc Am Bull 118:1507–1521CrossRefGoogle Scholar
  48. Habler G, Thöni M, Miller C (2007) Major and trace element chemistry and Sm–Nd age correlation of magmatic pegmatite garnet overprinted by eclogite-facies metamorphism. Chem Geol 241:4–22CrossRefGoogle Scholar
  49. Hajmolla Ali A, Sahandi MR (1992) Geologic map of Khorramabad 1:250000 survey sheet. Geological Survey of IranGoogle Scholar
  50. Harangi SZ, Downes H, Ko’sa L, Szabo' CS, Thirlwall MF, Mason PRD (2001) Almandine garnet in calc-alkaline volcanic rocks of the Northern Pannonian Basin (Eastern-Central Europe): geochemistry, petrogenesis and geodynamic implications. J Petrol 42:1813–1843CrossRefGoogle Scholar
  51. Harris NBW, Gravestock P, Inger S (1992) Ion-microprobe determinations of trace-element concentrations in garnets from anatectic assemblages. Chem Geol 100:41–49CrossRefGoogle Scholar
  52. Hattori KH, Guillot S, Saumur BM, Tubrett MN, Vidal O, Morfin S (2010) Corundum-bearing garnet peridotite from northern Dominican Republic: a metamorphic product of an arc cumulate in the Caribbean subduction zone. Lithos 114:437–450CrossRefGoogle Scholar
  53. Heimann A (2015) The chemical composition of gahnite and garnet as exploration guides to and indicators of rare element (Li) granitic pegmatites. U.S. Geological Survey, Open-File Report 1–24Google Scholar
  54. Hönig S, Leichmann J, Novosád T (2012) Garnet-bearing layered anorogenous granites and pegmatites of Hlína suite inside Brunovistulicum, structures and field occurrences. J Geosciences 19(1–2):153–156Google Scholar
  55. Horton BK, Hassanzadeh J, Stockli DF, Axen GJ, Gillis RJ, Guest B, Amini A, Fakhari MD, Zamanzadeh SM, Grove M (2008) Detrital zircon provenance of Neoproterozoic to Cenozoic deposits in Iran: implications for chronostratigraphy and collisional tectonics. Tectonophysics 451:97–122CrossRefGoogle Scholar
  56. Hsu LC (1968) Selected phase relationships in the system Al-Mn-Fe-Si-O-H, a model for garnet equilibria. J Petrol 9:40–83CrossRefGoogle Scholar
  57. Hutchison CS (1974) Laboratory handbook of petrographic techniques. Wiley, 527Google Scholar
  58. Irving AJ, Frey FA (1978) Distribution of trace-elements between garnet megacrysts and host volcanic liquids of Kimberlite to Rhyolitic composition. Geochim Cosmochim Acta 42:771–787CrossRefGoogle Scholar
  59. Kano H, Yashima R (1997) Almandine-garnets of acid magmatic origin from Yamanogawa, Fukushima prefecture and Kamitazawa, Yamagata prefecture. Journal of the Japanese Association: J Petrol Mineral Econ Geol 71:106–119Google Scholar
  60. Kerrick DM (1972) Experimental determination of muscovite+quartz stabiliy with pH2O<ptotal. Am J Sci 272:946–958CrossRefGoogle Scholar
  61. Kleck W, Foord E (1999) The chemistry, mineralogy, and petrology of the George Ashley Block pegmatite body. Am Mineral 84:695–707CrossRefGoogle Scholar
  62. Lévy CM (1951) Reproduction artificielle de garnets ferro-manganésifères série almandine-spessartine. CRASP 232:1953Google Scholar
  63. Li XH, Li ZX, Li WX, Liu Y, Yuan C, Wei GJ, Qi CS (2007) U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I- and A-type granites from central Guangdong, SE China: a major igneous event in response to foundering of a subducted flat-slab? Lithos 96:186–204CrossRefGoogle Scholar
  64. Li CY, Zhang RQ, Ding X, Ling MX, Fan WM, Sun WD (2016) Dating cassiterite using laser ablation ICP-MS. Ore Geol Rev 72(1):313–322CrossRefGoogle Scholar
  65. Liang JL, Ding X, Sun XM, Zhang ZM, Zhang H, Sun WD (2009) Nb/Ta fractionation observed in eclogites from the Chinese Continental Scientific Drilling Project. Chem Geol 268:27–40CrossRefGoogle Scholar
  66. Lima SM, Neiva AMR, Ramos JMF (2013) Characterization and origin of “common pegmatites”: the case of intragranitic dikes from the Pavia pluton (western Ossa-Morena Zone, Portugal). Proceeding of the 6th International Symposium on Granitic Pegmatites (New Hampshire and Maine, USA), 79–80Google Scholar
  67. London D (2008) Pegmatites. Mineralogical Association of Canada – MAC Special Publications 19:368Google Scholar
  68. Ma JL, Wei GJ, Xu YG, Long WG, Sun WD (2007) Mobilization and re-distribution of major and trace elements during extreme weathering of basalt in Hainan Island, South China. Geochim Cosmochim Acta 71:3223–3237CrossRefGoogle Scholar
  69. Manning DAC (1983) Chemical variation in garnets from aplites and pegmatites, peninsular Thailand. Mineral Mag 47:353–358CrossRefGoogle Scholar
  70. Masoudi F (1997) Contact metamorphism and pegmatite development in the SW of Arak, Iran. Ph.D. dissertation, University of Leeds, UKGoogle Scholar
  71. Masoudi F, Yardley BWD, Cliff RA (2002) Rb-Sr geochronology of pegmatites, plutonic rocks and a hornfels in the region southwest of Arak, Iran. J Sci 13:249–254Google Scholar
  72. Mazhari SA, Bea F, Amini S, Ghalamghash J, Molina JF, Montero P, Scarrow JH, Williams IS (2009) The Eocene bimodal Piranshahr massif of the Sanandaj–Sirjan Zone, NW Iran: a marker of the end of the collision in the Zagros orogen. J Geol Soc Lond 166:53–69CrossRefGoogle Scholar
  73. McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  74. McQuarrie N, Stock JM, Verdel C, Wernicke BP (2003) Cenozoic evolution of Neotethys and implications for the causes of plate motions. Geophys Res Lett 30(20):2036CrossRefGoogle Scholar
  75. Miller CF, Stoddard EF (1981) The role of manganese in the paragenesis of magmatic garnet: an example from the Old Woman Piute Range, California. J Geol 89:233–246CrossRefGoogle Scholar
  76. Mohajjel M (1997) Structure and tectonic evolution of Palaeozoic–Mesozoic rocks, Sanandaj–Sirjan Zone, Western Iran. Ph.D. dissertation, University of Wollongong, AustraliaGoogle Scholar
  77. Mohajjel M, Fergusson CL (2000) Dextral transpression in Late Cretaceous continental collision, Sanandaj–Sirjan zone, Western Iran. J Struct Geol 22:1125–1139CrossRefGoogle Scholar
  78. Mohajjel M, Fergusson CL, Sahandi MR (2003) Cretaceous–Tertiary convergence and continental collision, Sanandaj–Sirjan Zone, western Iran. J Asian Earth Sci 21:397–412CrossRefGoogle Scholar
  79. Moretz L, Heimann A, Bitner J, Wise M, Rodrigues Soares D, Mousinho Ferreira A (2013) The composition of garnet as indicator of rare metal (Li) mineralization in granitic pegmatites. Proceeding of The 6th International Symposium on Granitic Pegmatites, 94–95Google Scholar
  80. Müller A, Kaersley A, Spratt J, Seltmann R (2012) Petrogenetic implications of magmatic garnet in granitic pegmatites from southern Norway. Can Mineral 50:1095–1115CrossRefGoogle Scholar
  81. Nezafati N (2006) Au-Sn-W-Cu mineralization in the Astaneh-Sarband area, west Central Iran: including a comparison of the ores with ancient bronze artifacts from western Asia, Ph.D. dissertation, Eberhard-Karls University, GermanyGoogle Scholar
  82. Okay AI, Zattin M, Cavazza W (2010) Apatite fission-track data for the Miocene Arabia-Eurasia collision. Geology 38:35–38CrossRefGoogle Scholar
  83. Patranabis-Deb A, Schieber J, Basu A (2008) Almandine garnet phenocrysts in a 1Ga rhyolitic tuff from Central India. Geol Mag 146(1):133–143Google Scholar
  84. Pattison DRM (1992) Stability of andalusite and sillimanite and the Al2SiO5 triple point: constraints form the Ballachulish aureole, Scotland. J Geol 100:423–446CrossRefGoogle Scholar
  85. Pieczka A, Szuszkiewicz A, Szełęg E, Nejbert K, Łodziński M, Ilnicki S, Turniak K, Banach M, Hołub W, Michałowski P, Różniak R (2013) (Fe,Mn)–(Ti,Sn)–(Nb,Ta) oxide assemblage in a little fractionated portion of a mixed (NYF + LCT) pegmatite from Piława Górna, the Sowie Mts. block, SW Poland. J Geosci 58:91–112CrossRefGoogle Scholar
  86. Ravna EJK, Kullerud K, Ellingsen E (2006) Prograde garnet-bearing ultramafic rocks from the Tromsø Nappe, northern Scandinavian Caledonides. Lithos 92:336–356CrossRefGoogle Scholar
  87. René M, Stelling J (2007) Garnet-bearing granite from the Třebĭč pluton, Bohemian massif (Czech Republic). Mineral Petrol 91:55–69CrossRefGoogle Scholar
  88. Ricou LE (1994) Tethys reconstructed: plates, continental fragments and their boundaries since 260 Ma from Central America to south-eastern Asia. Geodin Acta (Paris) 7:169–218CrossRefGoogle Scholar
  89. Ricou LE, Braud J, Brunn JA (1977) Le Zagros. Soc. Géol. Fr. Mém. 8:33–52Google Scholar
  90. Rost F, Beermann E, Amthauer G (1975) Chemical investigation of pyrope garnet in the Stockdale Kimberlite intrusion, Riley County, Kansas. Am Mineral 60:675–680Google Scholar
  91. Samadi R, Miller NR, Mirnejad H, Harris C, Kawabata H, Shirdashtzadeh N (2014) Origin of garnet in aplite and pegmatite from Khajeh Morad in northeastern Iran: a major, trace element, and oxygen isotope approach. Lithos 208-209:378–392CrossRefGoogle Scholar
  92. Sevigny JH (1993) Monazite controlled Sm/Nd fractionation in leucogranites: an ion microprobe study of garnet phenocrysts. Geochim Cosmochim Acta 57:4095–4102CrossRefGoogle Scholar
  93. Shaw RA, Goodenough KM, Roberts NMW, Horstwood MSA, Chenery SR, Gunn AG (2016) Petrogenesis of rare-metal pegmatites in high-grade metamorphic terranes: a case study from the Lewisian Gneiss Complex of north-west Scotland. Precambrian Res 281:338–362CrossRefGoogle Scholar
  94. Simmons WB, Webber KL (2008) Pegmatite genesis: state of the art. Eur J Mineral 20:421–438CrossRefGoogle Scholar
  95. Sîrbu S, Buzgar N, Kasper HU (2010) Geochemistry of selected garnets in pegmatites from Răzoare formation (Preluca Mountains, Romania). Geology 56:109–121Google Scholar
  96. Smeds SA (1994) Zoning and fractionation trends of a peraluminous NYF granitic pegmatite field at Falun, south-central Sweden. GFF 116(3):175–184CrossRefGoogle Scholar
  97. Sokoutis D, Bonini M, Medvedev S, Boccaletti M, Talbot CJ, Koyi H (2000) Indentation of a continent with a built-in thickness change: experiment and nature. Tectonophysics 320:243–270CrossRefGoogle Scholar
  98. Stöcklin J (1968) Structural history and tectonics of Iran; a review. Am Assoc Pet Geol Bull 52:1229–1285Google Scholar
  99. Swanson SE, Veal WB (2010) Mineralogy and petrogenesis of pegmatites in the Spruce Pine District, North Carolina, USA. J Geosci 55:27–42Google Scholar
  100. Thöni M, Miller C (2000) Permo-Triassic pegmatites in the eo-Alpine eclogite-facies Koralpe complex, Austria: age and magma source constraints from mineral chemical, Rb–Sr and Sm–Nd isotope data. Schweiz Mineral Petrogr Mitt 80(2):169–186Google Scholar
  101. Thöni M, Miller C (2004) Ordovician meta-pegmatite garnet (NW Ötztal basement, Tyrol, Eastern Alps): preservation of magmatic garnet chemistry and Sm-Nd age during mylonitization. Chem Geol 209:1–26CrossRefGoogle Scholar
  102. Thöni M, Miller C, Zanetti A, Habler G, Goessler W (2008) Sm–Nd isotope systematics of high-REE accessory minerals and major phases: ID-TIMS, LA-ICP-MS and EPMA data constrain multiple Permian–Triassic pegmatite emplacement in the Koralpe, Eastern Alps. Chem Geol 254:216–237CrossRefGoogle Scholar
  103. Thöni M, Miller C, Hager C, Grasemann B, Horschinegg M (2012) New geochronological constraints on the thermal and exhumation history of the Lesser and Higher Himalayan Crystalline Units in the Kullu–Kinnaur area of Himachal Pradesh (India). J Asian Earth Sci 52:98–116CrossRefGoogle Scholar
  104. Uher P, Janák M, Konečný P, Vrabec M (2014) Rare-element granitic pegmatite of Miocene age emplaced in UHP rocks from Visole, Pohorje Mountains (Eastern Alps, Slovenia): accessory minerals, monazite and uraninite chemical dating. Geol Carpath 65(2):131–146CrossRefGoogle Scholar
  105. Villaseca C,  Martı́n Romera C,  De la Rosa J,  Barbero L (2003) Residence and redistribution of REE, Y, Zr, Th and U during granulite-facies metamorphism: behaviour of accessory and major phases in peraluminous granulites of central Spain. Chem Geol 200(3–4):293–323Google Scholar
  106. Vincent SJ, Allen MB, Ismail-Zadeh AD, Flecker R, Foland KA, Simmons MD (2005) Insights from the Talysh of Azerbaijan into the Paleogene evolution of the South Caspian region. Geol Soc Am Bull 117:1513–1533CrossRefGoogle Scholar
  107. Wang RC, Fontan F, Chen XM, Hu H, Liu CS, Xu SJ, De Parseval P (2003) Accessory minerals in the Xihuashan Y-enriched granitic complex, southern China: a record of magmatic and hydrothermal stages of evolution. Can Mineral 41:727–748CrossRefGoogle Scholar
  108. Weisbrod A (1974) Étude experimentale de l'équilibre grenat-cordiérite dans le système Mn-Fe-Al-Si-O-H, à 750°C. Implications thermodynamiques et pétrologiques Bulletin de la Société Française Minéralogie et de Cristallographie 97:261–270Google Scholar
  109. Whitworth MP (1992) Petrogenetic implications of garnets associated with lithium pegmatites from SE Ireland. Mineral Mag 56:75–83CrossRefGoogle Scholar
  110. Whitworth MP, Feely M (1994) The compositional range of magmatic Mn-garnets in Galway Granite, Connemara, Ireland. Mineral Mag 58:163–168CrossRefGoogle Scholar
  111. Wilmsen M, Fürsich FT, Seyed-Emami K, Majidifard MR, Taheri J (2009) The Cimmerian Orogeny in northern Iran: tectono-stratigraphic evidence from the foreland. Terra Nova 21:211–218CrossRefGoogle Scholar
  112. Wise MA, Brown CD (2010) Mineral chemistry, petrology and geochemistry of the Sebago granite–pegmatite system, southern Maine, USA. J Geosci 55:3–26Google Scholar
  113. Wu FY, Sun DY, Jahn BM, Wilde SA (2004) A Jurassic garnet-bearing granitic pluton from NE China showing tetrad REE patterns. J Asian Earth Sci 23:731–744CrossRefGoogle Scholar
  114. Yuan C, Sun M, Xiao W, Wilde S, Li X, Liu X, Long X, Xia X, Ye K, Li J (2008) Garnet-bearing tonalitic porphyry from East Kunlun, Northeast Tibetan Plateau: implications for adakite and magmas from the MASH zone. Int J Earth Sci (Geologische Rundschau) 98(6):1489–1510CrossRefGoogle Scholar
  115. Zhang C, Gieré R, Stünitz H, Brack P, Ulmer P (2001) Garnet-quartz intergrowths in granitic pegmatites from Bergell and Adamello, Italy. Schweiz Mineral Petrogr Mitt 81:89–113Google Scholar
  116. Zhang L, Zhong Z, Zhang H, Sun W, Xiang H (2009) The formation of foliated (garnet-bearing) granites in the Tongbai-Dabie orogenic belt: partial melting of subducted continental crust during exhumation. J Metamorph Geol 27:789–803CrossRefGoogle Scholar
  117. Zhang J, Ma C, She Z (2012) An Early Cretaceous garnet-bearing metaluminous A-type granite intrusion in the East Qinling Orogen, Central China: petrological, mineralogical and geochemical constraints. Geosci Front 3:635–646CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Somayeh Rahmani Javanmard
    • 1
  • Zahra Tahmasbi
    • 1
  • Xing Ding
    • 2
    • 3
  • Ahmad Ahmadi Khalaji
    • 1
  • Callum J. Hetherington
    • 4
  1. 1.Department of Geology, Faculty of ScienceLorestan UniversityKhorramabadIran
  2. 2.State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of GeochemistryChinese Academy of SciencesGuangzhouChina
  3. 3.CAS Center for Excellence in Tibetan Plateau Earth SciencesBeijingChina
  4. 4.Department of GeosciencesTexas Tech UniversityLubbockUSA

Personalised recommendations