The Victor Mine (Superior Craton, Canada): Neoproterozoic lherzolitic diamonds from a thermally-modified cratonic root

  • Thomas Stachel
  • Anetta Banas
  • Sonja Aulbach
  • Karen V. Smit
  • Pamela Wescott
  • Ingrid L. Chinn
  • Julie Kong
Original Paper
  • 26 Downloads

Abstract

The Jurassic Victor kimberlite (Attawapiskat Field) was emplaced into an area of the central Superior Craton that was affected by a lithosphere-scale thermal event at ~1.1 Ga. Victor diamonds formed ca. 400 million years after this event, in a lithospheric mantle characterized by an unusually cool model geotherm (37–38 mW/m2; Hasterok and Chapman 2011). The bulk of Victor diamonds derives from a thin (<10 km thick) layer that is located at about 180 km depth and represents lherzolitic substrates (for 85% of diamonds). Geothermobarometric calculations (average pressure and temperature at the 1 sigma level are 57 ± 2 kbar and 1129 ± 16 °C) coupled with typical fluid metasomatism-associated trace element patterns for garnet inclusions indicate diamond precipitation under sub-solidus (lherzolite + H2O) conditions. This conclusion links the presence of a diamond-rich lherzolitic layer in the lithospheric mantle, just above the depth where ascending melts would freeze, to the unusually low paleogeotherm beneath Attawapiskat, because along an average cratonic geotherm (40 mW/m2) lherzolite in the presence of hydrous fluid would melt at depths >140 km.

Keywords

Inclusion in diamond Garnet lherzolite Geothermobarometry Nitrogen aggregation Rare earth elements 

Notes

Acknowledgements

We are grateful to Susan Van Patter for helping I.C. with the collection of inclusion-bearing Victor diamonds. Gerhard Brey, Herman Grütter, and Michael Seller are thanked for many helpful discussions. Bruce Kjarsgaard and two anonymous reviewers are thanked for their insightful comments and edits. T.S. acknowledges funding through a Natural Sciences and Engineering Research Council of Canada Collaborative Research and Development Grant co-sponsored by De Beers Canada Inc., a Natural Sciences and Engineering Research Council of Canada Discovery Grant, and the Canada Research Chairs programme. De Beers Canada Inc. is thanked for permission to publish.

Supplementary material

710_2018_574_MOESM1_ESM.pdf (147 kb)
ESM 1 (PDF 147 kb)
710_2018_574_MOESM2_ESM.xlsx (44 kb)
ESM 2 (XLSX 44 kb)

References

  1. Armstrong KA, Nowicki TE, Read GH (2004) Kimberlite AT-56: a mantle sample from the north central Superior craton, Canada. Lithos 77(1–4):695–704CrossRefGoogle Scholar
  2. Aulbach S, Stachel T, Viljoen KS, Brey GP, Harris JW (2002) Eclogitic and websteritic diamond sources beneath the Limpopo Belt - is slab-melting the link? Contrib Mineral Petr 143(1):56–70CrossRefGoogle Scholar
  3. Aulbach S, Creaser RA, Stachel T, Heaman LM, Chinn IL, Kong J (2018) Diamond ages from Victor (Superior Craton): Intra-mantle cycling of volatiles (C, N, S) during supercontinent reorganisation. Earth Planet Sc Lett 490:77–87CrossRefGoogle Scholar
  4. Banas A, Stachel T, Muehlenbachs K, McCandless TE (2007) Diamonds from the Buffalo Head Hills, Alberta: Formation in a non-conventional setting. Lithos 93(1–2):199–213CrossRefGoogle Scholar
  5. Boyd FR, Gurney JJ (1986) Diamonds and the African lithosphere. Science 232(4749):472–477CrossRefGoogle Scholar
  6. Brey GP (1989) Geothermobarometry for lherzolites: experiments from 10 to 60 kb, new thermobarometers and application to natural rocks. Habilitation Thesis, TU Darmstadt, Germany, 227ppGoogle Scholar
  7. Brey GP, Köhler T (1990) Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31:1353–1378CrossRefGoogle Scholar
  8. Bulanova GP, Griffin WL, Ryan CG, Shestakova OY, Barnes SJ (1996) Trace elements in sulfide inclusions from Yakutian diamonds. Contrib Mineral Petr 124(2):111–125CrossRefGoogle Scholar
  9. Creighton S, Stachel T, Matveev S, Höfer H, McCammon C, Luth RW (2009) Oxidation of the Kaapvaal lithospheric mantle driven by metasomatism. Contrib Mineral Petr 157(4):491–504CrossRefGoogle Scholar
  10. Davies RM, Griffin WL, O'Reilly SY, McCandless TE (2004) Inclusions in diamonds from the K14 and K10 kimberlites, Buffalo Hills, Alberta, Canada: diamond growth in a plume? Lithos 77(1–4):99–111CrossRefGoogle Scholar
  11. Day HW (2012) A revised diamond-graphite transition curve. Am Mineral 97(1):52–62CrossRefGoogle Scholar
  12. Frey FA, Green DH (1974) The mineralogy, geochemistry and origin of lherzolite inclusions in Victorian basanites. Geochim Cosmochim Ac 38:1023–1059CrossRefGoogle Scholar
  13. Girnis AV, Bulatov VK, Brey GP, Gerdes A, Höfer HE (2013) Trace element partitioning between mantle minerals and silico-carbonate melts at 6–12 GPa and applications to mantle metasomatism and kimberlite genesis. Lithos 160–161:183–200CrossRefGoogle Scholar
  14. Griffin WL, Ryan CG (1995) Trace-elements in Indicator minerals - area selection and target evaluation in diamond exploration. J Geochem Explor 53(1–3):311–337CrossRefGoogle Scholar
  15. Grütter HS (2009) Pyroxene xenocryst geotherms: techniques and application. Lithos 112(Suppl 2):1167–1178CrossRefGoogle Scholar
  16. Grütter HS, Gurney JJ, Menzies AH, Winter F (2004) An updated classification scheme for mantle-derived garnet, for use by diamond explorers. Lithos 77(1–4):841–857CrossRefGoogle Scholar
  17. Gurney JJ (1984) A correlation between garnets and diamonds in kimberlites. In: Glover JE, Harris PG (eds) Kimberlite occurrence and origin: a basis for conceptual models in exploration, vol 8. Dept Geol UWA, Univ Ext UWA, Perth, pp 143–166Google Scholar
  18. Harlan SS, Heaman L, LeCheminant AN, Premo WR (2003) Gunbarrel mafic magmatic event: A key 780 Ma time marker for Rodinia plate reconstructions. Geology 31(12):1053–1056CrossRefGoogle Scholar
  19. Harris JW, Duncan DJ, Zhang F, Mia Q, Zhu Y (1994) The physical characteristics and syngenetic inclusion geochemistry of diamonds from Pipe 50, Liaoning Province, People's Republic of China. In: Meyer HOA, Leonardos OH (eds) Proceedings of the 5th International Kimberlite Conference, Araxa, Brazil, 1991, vol 2. Diamonds: Characterization, genesis and exploration. Companhia de Pesquisa de Recursos Minerais Spec Publ Jan/94, vol 1/B. Brasilia, pp 106–115Google Scholar
  20. Hasterok D, Chapman DS (2011) Heat production and geotherms for the continental lithosphere. Earth Planet Sc Lett 307(1–2):59–70CrossRefGoogle Scholar
  21. Heaman LM, Kjarsgaard BA (2000) Timing of eastern North American kimberlite magmatism: continental extension of the Great Meteor hotspot track? Earth Planet Sc Lett 178(3–4):253–268CrossRefGoogle Scholar
  22. Heaman LM, LeCheminant AN, Rainbird RH (1992) Nature and timing of Franklin igneous events, Canada: implications for a Late Proterozoic mantle plume and the break-up of Laurentia. Earth Planet Sc Lett 109(1):117–131CrossRefGoogle Scholar
  23. Howarth GH, Taylor LA (2016) Multi-stage kimberlite evolution tracked in zoned olivine from the Benfontein sill, South Africa. Lithos 262:384–397CrossRefGoogle Scholar
  24. Janse AJA (1994) Is Clifford's rule still valid? Affirmative examples from around the world. In: Meyer HOA, Leonardos OH (eds) Proceedings of the 5th International Kimberlite Conference, Araxa, Brazil, 1991, vol 2. Diamonds: Characterization, genesis and exploration. Companhia de Pesquisa de Recursos Minerais Spec Publ Jan/94, vol 1/B. Brasilia, pp 215–235Google Scholar
  25. Januszczak N, Seller MH, Kurszlaukis S, Murphy C, Delgaty J, Tappe S, Ali K, Zhu J, Ellemers P (2013) A multidisciplinary approach to the Attawapiskat Kimberlite Field, Canada: Accelerating the discovery-to-production pipeline. In: Pearson DG, Grütter HS, Harris JW, Kjarsgaard BA, O’Brien H, Rao NVC, Sparks S (eds) Proceedings of 10th International Kimberlite Conference, vol 2. Springer India, New Delhi, pp 157–171Google Scholar
  26. Jaques AL, Hall AE, Sheraton JW, Smith CB, Sun S-S, Drew RM, Foudoulis C, Ellingsen K (1989) Composition of crystalline inclusions and C-isotopic composition of Argyle and Ellendale diamonds. In: Ross J et al. (eds) Kimberlites and related rocks, GSA Spec Publ 14, vol 2. Blackwell, Carlton, pp 966–989Google Scholar
  27. Kjarsgaard BA (2007) Kimberlite diamond deposits. In: Goodfellow WD (ed) Mineral deposits of Canada: a synthesis of major deposit-types, district Metallogeny, the evolution of geological provinces, and exploration methods. Mineral deposits division, Geol Assoc Canada, Ottawa, Spec Publ no 5, pp 245–272Google Scholar
  28. Kong JM, Boucher DR, Scott Smith BH (1999) Exploration and geology of the Attawapiskat Kimberlites, James Bay Lowland, Northern Ontario, Canada. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) The JB Dawson Volume, Proceedings of the VIIth International Kimberlite Conference, vol 1. Red Roof Design, Cape Town, pp 452–467Google Scholar
  29. Krebs MY, Pearson DG, Stachel T, Woodland S, Chinn I, Kong J (2017) Trace elements in gem-quality diamonds from De Beers’ Victor Mine, Ontario, Canada. 11th International Kimberlite Conference Extended Abstract No. 11IKC-4577Google Scholar
  30. Leahy K, Taylor WR (1997) The influence of the Glennie domain deep structure on the diamonds in Saskatchewan kimberlites. Russ Geol Geophys 38(2):481–491Google Scholar
  31. Li ZX, Bogdanova SV, Collins AS, Davidson A, De Waele B, Ernst RE, Fitzsimons ICW, Fuck RA, Gladkochub DP, Jacobs J, Karlstrom KE, Lu S, Natapov LM, Pease V, Pisarevsky SA, Thrane K, Vernikovsky V (2008) Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Res 160(1):179–210CrossRefGoogle Scholar
  32. McDonough WF, Sun S-S (1995) The composition of the Earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  33. Menzies MA, Rogers N, Tindle A, Hawkesworth CJ (1987) Metasomatic and enrichment processes in lithospheric peridotites, an effect of asthenosphere-lithosphere interaction. In: Menzies MA, Hawkesworth CJ (eds) Mantle Metasomatism. Academic Press, London, pp 313–364Google Scholar
  34. Nimis P, Grütter H (2010) Internally consistent geothermometers for garnet peridotites and pyroxenites. Contrib Mineral Petr 159(3):411–427CrossRefGoogle Scholar
  35. Nimis P, Taylor WR (2000) Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contrib Mineral Petr 139(5):541–554CrossRefGoogle Scholar
  36. Ojakangas RW, Morey GB, Green JC (2001) The Mesoproterozoic Midcontinent Rift System, Lake Superior Region, USA. Sediment Geol 141–142(Suppl C): 421–442Google Scholar
  37. Pearson DG, Canil D, Shirey SB (2004) Mantle samples included in volcanic rocks: xenoliths and diamonds. In: Carlson RW (ed) Treatise on geochemistry, vol 2: The Mantle and Core. Elsevier-Pergamon, Oxford, pp 171–275Google Scholar
  38. Sage RP (2000) Kimberlites of the Attawapiskat area, James Bay lowlands, northern Ontario. Ontario Geol Surv, Open File Report 6019, 341 ppGoogle Scholar
  39. Shimizu N, Richardson SH (1987) Trace element abundance patterns of garnet inclusions in peridotite-suite diamonds. Geochim Cosmochim Ac 51(3):755–758CrossRefGoogle Scholar
  40. Shimizu N, Sobolev NV, Yefimova ES (1997) Chemical heterogeneities of inclusion garnets and juvenile character of peridotitic diamonds from Siberia. Russ Geol Geophys 38(2):356–372Google Scholar
  41. Shirey SB, Harris JW, Richardson SH, Fouch M, James DE, Cartigny P, Deines P, Viljoen F (2003) Regional patterns in the paragenesis and age of inclusions in diamond, diamond composition, and the lithospheric seismic structure of southern Africa. Lithos 71(2–4):243–258CrossRefGoogle Scholar
  42. Smit KV, Shirey SB, Richardson SH, le Roex AP, Gurney JJ (2010) Re-Os isotopic composition of peridotitic sulphide inclusions in diamonds from Ellendale, Australia: age constraints on Kimberley cratonic lithosphere. Geochim Cosmochim Ac 74(11):3292–3306Google Scholar
  43. Smit KV, Pearson DG, Stachel T, Seller M (2014a) Peridotites from Attawapiskat, Canada: Mesoproterozoic reworking of Palaeoarchaean lithospheric mantle beneath the Northern Superior Superterrane. J Petrol 55(9):1829–1863CrossRefGoogle Scholar
  44. Smit KV, Stachel T, Stern RA (2014b) Diamonds in the Attawapiskat area of the Superior craton (Canada): evidence for a major diamond-forming event younger than 1.1 Ga. Contrib Mineral Petr 167(1):1–16CrossRefGoogle Scholar
  45. Sobolev NV (1977) Deep-seated inclusions in kimberlites and the problem of the composition of the upper mantle. (Translated from the Russian edition, 1974). AGU, Washington, 279 ppGoogle Scholar
  46. Sobolev NV, Zyuzin NI, Kuznetsova IK (1966) A continuous range in the series of pyrope-grossular garnets in grospydites [in Russian]. Dokl Acad Sci USSR 167:902–905Google Scholar
  47. Stachel T, Harris JW (1997) Diamond precipitation and mantle metasomatism - evidence from the trace element chemistry of silicate inclusions in diamonds from Akwatia, Ghana. Contrib Mineral Petr 129(2–3):143–154CrossRefGoogle Scholar
  48. Stachel T, Harris JW (2008) The origin of cratonic diamonds - constraints from mineral inclusions. Ore Geol Rev 34(1–2):5–32CrossRefGoogle Scholar
  49. Stachel T, Luth RW (2015) Diamond formation - where, when and how? Lithos 220–223:200–220CrossRefGoogle Scholar
  50. Stachel T, Viljoen KS, Brey G, Harris JW (1998) Metasomatic processes in lherzolitic and harzburgitic domains of diamondiferous lithospheric mantle: REE in garnets from xenoliths and inclusions in diamonds. Earth Planet Sc Lett 159(1–2):1–12CrossRefGoogle Scholar
  51. Stachel T, Aulbach S, Brey GP, Harris JW, Leost I, Tappert R, Viljoen KS (2004) The trace element composition of silicate inclusions in diamonds: a review. Lithos 77(1–4):1–19CrossRefGoogle Scholar
  52. Van Schmus WR, Hinze WJ (1985) The Midcontinent Rift System. Annu Rev Earth Planet Sci 13(1):345–383CrossRefGoogle Scholar
  53. Vitorello I, Pollack HN (1980) On the variation of continental heat flow with age and the thermal evolution of continents. J Geophys Res 85(B2):983–995CrossRefGoogle Scholar
  54. Wyllie PJ, Ryabchikov ID (2000) Volatile components, magmas, and critical fluids in upwelling mantle. J Petrol 41(7):1195–1206CrossRefGoogle Scholar
  55. Yuan H, Romanowicz B (2010) Lithospheric layering in the North American craton. Nature 466(7310):1063–1068CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Earth and Atmospheric SciencesUniversity of AlbertaEdmontonCanada
  2. 2.APEX Geosciences Ltd.EdmontonCanada
  3. 3.Institut für Geowissenschaften, Petrologie und GeochemieGoethe-Universität FrankfurtFrankfurt am MainGermany
  4. 4.Gemological Institute of AmericaNew YorkUSA
  5. 5.De Beers Group Services (Pty) LtdJohannesburgSouth Africa
  6. 6.De Beers – Exploration CanadaTorontoCanada

Personalised recommendations