Skip to main content
Log in

Conodont geothermometry in pyroclastic kimberlite: constraints on emplacement temperatures and cooling histories

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Kimberlite pipes from Chidliak, Baffin Island, Nunavut, Canada host surface-derived Paleozoic carbonate xenoliths containing conodonts. Conodonts are phosphatic marine microfossils that experience progressive, cumulative and irreversible colour changes upon heating that are experimentally calibrated as a conodont colour alteration index (CAI). CAI values permit us to estimate the temperatures to which conodont-bearing rocks have been heated. Conodonts have been recovered from 118 samples from 89 carbonate xenoliths collected from 12 of the pipes and CAI values within individual carbonate xenoliths show four types of CAI distributions: (1) CAI values that are uniform throughout the xenolith; (2) lower CAIs in core of a xenolith than the rim; (3) CAIs that increase from one side of the xenolith to the other; and, (4) in one xenolith, higher CAIs in the xenolith core than at the rim. We have used thermal models for post-emplacement conductive cooling of kimberlite pipes and synchronous heating of conodont-bearing xenoliths to establish the temperature–time history of individual xenoliths within the kimberlite bodies. Model results suggest that the time-spans for xenoliths to reach the peak temperatures recorded by CAIs varies from hours for the smallest xenoliths to 2 or 3 years for the largest xenoliths. The thermal modelling shows the first three CAI patterns to be consistent with in situ conductive heating of the xenoliths coupled to the cooling host kimberlite. The fourth pattern remains an anomaly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Afanasyev AA, Melnik O, Porritt L, Schumacher JC, Sparks RSJ (2014) Hydrothermal alteration of kimberlite by convective flows of external water. Contrib Mineral Petr 168:1038

    Article  Google Scholar 

  • Aldridge RJ (1987) Conodont palaeobiology: a historical review. In: Aldridge RJ (ed) Palaeobiology of conodonts. British Micropalaeontological Society, Ellis Horwood Ltd, p 11–34

    Google Scholar 

  • Aldridge RJ, Smith MP, Norby RD, Briggs DEG (1987) The architecture and function of Carboniferous polygnathacean conodont apparatuses. In: Aldridge RJ (ed) Palaeobiology of conodonts. British Micropalaeontological Society, Ellis Horwood Ltd, p 63–75

    Google Scholar 

  • Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Oxford University Press, London, p 520

  • Cookenboo HO, Orchard MJ, Daoud DK (1998) Remnants of Paleozoic cover of the Archean Canadian Shield: limestone xenoliths from kimberlite in the central Slave Craton. Geology 26:391–394

    Article  Google Scholar 

  • Dipple GM (1995) Radial fluid flow and reaction during contact metamorphism. Geophys Res Lett 22:3127–3130

    Article  Google Scholar 

  • Ellison SP (1944) Composition of conodonts. J Paleontol 18:133–140

    Google Scholar 

  • Epstein AG, Epstein JB, Harris LD (1977) Conodont color alteration – an index to organic metamorphism. USGS Professional Paper 995:27

    Google Scholar 

  • Fedortchouk Y, Canil D (2004) Intensive variables in kimberlite magmas, Lac de Gras, Canada and implications for diamond survival. J Petrol 45:1725–1745

    Article  Google Scholar 

  • Fontana G, Mac Niocaill C, Brown RJ, Sparks RSJ, Field M (2011) Emplacement temperatures of pyroclastic and volcaniclastic deposits in kimberlite pipes in southern Africa. B Volcanol 73:1063–1083

    Article  Google Scholar 

  • Harris AG (1981) Color and alteration: an index to organic metamorphism in conodont elements. In: Robinson RA (ed) Treatise on invertebrate paleontology, Part W, revised, Miscellanea. Supplement 2: Conodonta. Geol Soc Am, p W56–W60

  • Heaman LM, Pell J, Grütter HS, Creaser RA (2015) U-Pb geochronology and Sr/Nd isotope compositions of groundmass perovskite from the newly discovered Jurassic Chidliak kimberlite field, Baffin Island, Canada. Earth Planet Sci Lett 415:183–199

    Article  Google Scholar 

  • Kavanagh JL, Sparks RS (2009) Temperature changes in ascending kimberlite magma. Earth Planet Sci Lett 286:404–413

    Article  Google Scholar 

  • Kurszlaukis S, Pell J, Fulop A (2014) A generic emplacement model for the Chidliak kimberlites, Baffin Island, Nunavut. In: Carrasco-Núñez G, Aranda-Gómez JJ, Ort MH, Silva-Corona JJ (eds) 5th International Maar Conference, Juriquilla Qro México. Universidad Nacional Autónoma de México, Centro de Geociencias, Abstracts vol, p 26–27

  • Marti J, Diez-Gil JL, Ortiz R (1991) Conduction model for the thermal influence of lithic clasts in mixtures of hot gases and ejecta. J Geophys Res 96(B13):21879–21885

    Article  Google Scholar 

  • McArthur ML, Tipnis RS, Godwin CI (1980) Early and Middle Ordovician conodonts fauna from the Mountain diatreme, northern Mackenzie Mountains, District of Mackenzie. Geol Surv Can Pap 80-1A:363–368

    Google Scholar 

  • McCracken AD (2000) Middle and Late Ordovician conodonts from the Foxe Lowland of southern Baffin Island, Nunavut. Geol Surv Can Bull 557:159–216

    Google Scholar 

  • McCracken AD, Armstrong DK, McGregor DC (1996) Fossils as indicators of thermal alteration associated with kimberlites. In: LeCheminant AN, Richardson DG, DiLabio RNW, Richardson KA (eds) Searching for diamonds in Canada. Geol Surv Canada Open File 3228:143–145

  • McCracken AD, Armstrong DK, Bolton TE (2000) Conodonts and corals in kimberlite xenoliths confirm a Devonian seaway in central Ontario and Quebec. Can J Earth Sci 37:1651–1663

    Article  Google Scholar 

  • McFadden PL (1977) A paleomagnetic determination of the emplacement temperature of some South African kimberlites. Geophys J R Astron Soc 50:587–604

    Article  Google Scholar 

  • Mitchell RH (2008) Petrology of hypabyssal kimberlites: relevance to primary magma compositions. J Volcano Geoth Res 174:1–8

    Article  Google Scholar 

  • Nowicki TE, Coopersmith H, Pilotto D (2016) Mineral resource estimate for the Chidliak project, Baffin Island, Nunavut. NI-43-101 Technical Report, https://www.pdiam.com/assets/docs/technical-reports/msc16_006r-mineral-resource-estimate-for-the-chidliak-project_2016-06-16.pdf, 228p

  • Nowlan GS (1987) Report on one sample from a kimberlite boulder in an esker near Larder Lake, submitted for microfossil analysis by Dr HA, Lee (Consultant: NTS 32 D/04. Geol Surv Canada, Paleontological Report 007-GSN-1987

  • Pell J, Grütter H, Neilson S, Lockhart G, Dempsey S, Grenon H (2013) Exploration and discovery of the Chidliak Kimberlite Province, Baffin Island, Nunavut, Canada’s newest diamond district. In: Pearson DG, Grütter HS, Harris J, Kjarsgaard BA, O’Brien H, Chalapathi Rao BV, Sparks S (eds) Proceedings of the 10th International Kimberlite Conference, vol 2, Special Issue J Geol Soc India, 209–227

  • Pell J, Russell JK, Zhang S (2015) Kimberlite emplacement temperatures from conodont geothermometry. Earth Planet Sci Lett 411:131–141

    Article  Google Scholar 

  • Philpotts AR (1990) Principles of igneous and metamorphic petrology. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Porritt LA, Cas RAF, Schaefer B (2012) Textural analysis of strongly altered kimberlite: examples from the Ekati Diamond Mine, Northwest Territories, Canada. Can Mineral 50:625–641

    Article  Google Scholar 

  • Recktenwald G (2006) Transient, one-Dimensional heat conduction in a convectively cooled sphere. MATLAB Code

  • Rejebian VA, Harris AG, Huebner JS (1987) Conodont color and textural alteration: an index to regional metamorphism, contact metamorphism, and hydrothermal alteration. Bull Geol Soc Am 99:471–479

    Article  Google Scholar 

  • Sanford BV, Grant AC (2000) Geological framework of the Ordovician system in the southeast Arctic Platform, Nunavut. In: McCracken AD, Bolton TE (eds) Geology and paleontology of the southeast Arctic Platform and southern Baffin Island, Nunavut. Geol Surv Canada, Bulletin 557:13–38

  • Scott DJ (1996) Geology of the Hall Peninsula east of Iqaluit, southern Baffin Island, Northwest Territories. Current Research 1996-C; Geol Surv Canada, p 83–91

  • Scott DJ (1999) U-Pb geochronology of the eastern Hall Peninsula, southern Baffin Island, Canada: a northern link between the Archean of West Greenland and the Paleoproterozoic Torngat Orogen of northern Labrador. Precambrian Res 91:97–107

    Google Scholar 

  • Scott Smith BH, Nowicki TE, Russell JK, Webb KJ, Mitchell RH, Hetman CM, Harder M, Skinner EMW, Robey JV (2013) Kimberlite terminology and classification. In: Pearson DG, Grütter HS, Harris J, Kjarsgaard BA, O’Brien H, Chalapathi Rao BV, Sparks S (eds) Proceedings of the 10th International Kimberlite Conference, vol 2, Special Issue J Geol Soc India, 1–19

  • Sparks RSJ (2013) Kimberlite volcanism. Annu Rev Earth Planet Sci 41:497–528

    Article  Google Scholar 

  • Sparks RSJ, Baker L, Brown RJ, Field M, Schumacher J, Stripp G, Walters A (2006) Dynamic constraints on kimberlite volcanism. J Volcanol Geoth Res 155:18–48

    Article  Google Scholar 

  • Sparks RSJ, Brooker RA, Field M, Kavanagh J, Schumacher JC, Walter MJ, White J (2009) The nature of erupting kimberlite melts. Lithos 112S(1):429–438

    Article  Google Scholar 

  • Stamm N, Schmidt MW (2017) Asthenospheric kimberlites: volatile contents and bulk compositions at 7 GPa. Earth Planet Sci Lett 474:309–321

    Article  Google Scholar 

  • Stasiuk LD, Lockhart GD, Nassichuk WW, Carlson JA (1999) Thermal maturity evaluation of dispersed organic matter inclusions from kimberlite pipes, Lac de Gras, Northwest Territories, Canada. Inter J Coal Geol 40:1–25

    Article  Google Scholar 

  • St-Onge MR, Jackson GD, Henderson I (2006) Geology, Baffin Island (south of 70° N and east of 80° W), Nunavut. Geol Surv Canada, Open File 4931, scale 1:500 000

  • Stripp GR, Field M, Schumacher JC, Sparks RSJ (2006) Post emplacement serpentinization and related hydrothermal metamorphism in a kimberlite from Venetia, South Africa. J Metam Geol 24:515–534

    Article  Google Scholar 

  • Tolmacheva TY, Alekseev AS, Reimers AN (2008) Conodonts in kimberlite xenoliths from the Arkhangels’k region: key to stratigraphy of the lost Ordovician in northern Baltica. Seventh Baltic Stratigraphical Conference Abstracts, p 70

  • Tolmacheva TY, Alekseev, Reimers AN (2013) Conodonts in xenoliths from kimberlite pipes of the Southeastern White Sea region (Arkhangels’k oblast): key to Ordovician stratigraphic and paleogeographic reconstruction of the East European platform. Dokl Earth Sci 451:687–691

    Article  Google Scholar 

  • Trettin HP (1975) Investigations of lower Paleozoic geology, Foxe Basin, northeastern Melville Peninsula, and parts of northwestern and central Baffin Island. Geol Surv Can Bull 251: 177

    Google Scholar 

  • Whalen JB, Wodicka N, Taylor B, Jackson GD (2010) Cumberland batholith, Trans-Hudson Orogen, Canada: Petrogenesis and implications for Paleoproterozoic crustal and orogenic processes. Lithos 117:99–118

    Article  Google Scholar 

  • Zhang S (2011) Timing and extent of maximum transgression across Laurentia during Late Ordovician: new evidence from Slave Craton, Canadian shield. Palaeogeogr Palaeocl 206:196–204

    Article  Google Scholar 

  • Zhang S (2012) Ordovician stratigraphy and oil shale, southern Baffin Island, Nunavut — preliminary field and post-field data. Geol Surv Canada, Open File 7199, 26 pp

  • Zhang S, Pell J (2013) Study of sedimentary rock xenoliths from kimberlites on Hall Peninsula, Baffin Island, Nunavut. In: Mate D (ed) Summary of Activities 2012, Canada-Nunavut Geoscience Office, p 107–112

  • Zhang S, Pell J (2014) Conodonts recovered from the carbonate xenoliths in kimberlites confirm the Paleozoic cover on Hall Peninsula, Nunavut. Can J Earth Sci 51:142–155

    Article  Google Scholar 

  • Zhang S, Pell J (2016) Conodonts and their colour alteration index values from carbonate xenoliths in four kimberlites on Hall Peninsula, Baffin Island, Nunavut. In: Ham L (ed) Summary of activities 2016, Canada-Nunavut Geoscience Office, p 1–12

Download references

Acknowledgements

Authors thank Peregrine Diamonds Ltd. for the permission to collect carbonate xenolith samples and Canada-Nunavut Geoscience Office (CNGO) for its financial support for sample processing. Special thanks are due to Hillary Taylor (Geological Survey of Canada, Vancouver) for processing conodont samples, to Herman Grütter for his constructive criticisms on the manuscript and to Cathy Fitzgerald for helping with the figures and reviewing the manuscript. Constructive reviews by Sandy McCracken, Tom Nowicki and guest editor Bruce Kjarsgaard are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Pell.

Additional information

Editorial handling: B. Kjarsgaard

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 71 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pell, J., Russell, J.K. & Zhang, S. Conodont geothermometry in pyroclastic kimberlite: constraints on emplacement temperatures and cooling histories. Miner Petrol 112 (Suppl 2), 477–490 (2018). https://doi.org/10.1007/s00710-018-0561-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-018-0561-3

Keywords

Navigation