Mineralogy and Petrology

, Volume 112, Issue 3, pp 297–315 | Cite as

Geochronology and geochemistry of the Huilvshan gabbro in west Junggar (NW China): Implications for magma process and tectonic regime

Original Paper


Gabbro plutons, consisting of clinopyroxene and plagioclase with trace amounts of magnetite, titanite, and apatite, intruded into Early Carboniferous volcanic-sedimentary strata in the Huilvshan gold mining region (west Junggar, China). Samples collected from two gabbro bodies are tholeiitic in composition with low concentrations of Na2O + K2O, showing weak depletions of light rare earth elements with insignificant Eu, Nb, and Ti anomalies. Zircon U-Pb analyses yield a weighted average U-Pb age of 296.1 ± 2.7 Ma (MSWD = 0.98), which could represent the time corresponding to mafic magma emplacement in the Huilvshan region. Geochemical calculations suggest that this mafic magma was derived from a depleted mantle source in a post-collisional tectonic setting corresponding to ~ 4% partial melting of spinel lherzolite.


Gabbro Zircon U-Pb age Geochemical calculation Post-collisional tectonic setting West Junggar China 



This work was supported by the Natural Science Foundation of China (Grant Nos. 41672047, 41372062). We are greatful to Dr. Trond Slagstad (Geological Survey of Norway) and Dr. Maarten A.T.M. Broekmans for their critical comments and suggestions, which helped us to improve this paper greatly. Dr. Tian Qiu and Prof. Xianhua Li helped with SIMS zircon U-Pb dating.


  1. Alasino PH, Casquet C, Pankhurst RJ, Rapela CW, Dahlquist JA, Galindo C, Larrovere MA, Recio C, Paterson SR, Colombo F, Baldo EG (2016) Mafic rocks of the Ordovician Famatinian magmatic arc (NW Argentina): New insights into the mantle contribution. Geol Soc Am Bull 128(7–8):1105–1120CrossRefGoogle Scholar
  2. Aldanmaz E, Pearce JA, Thirlwall MF, Mitchell JG (2000) Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. J Volcanol Geotherm Res 102:67–95CrossRefGoogle Scholar
  3. An F, Zhu YF (2009) SHRIMP U-Pb zircon ages of tuff in Baogutu Formation and their geological significances. Acta Petrologica Sinica 25:1437–1445 (Chinese with English abstract)Google Scholar
  4. Cai KD, Sun M, Jahn BM, Xiao WJ, Long XP, Chen HY, Xia XP, Chen M, Wang XS (2016) Petrogenesis of the Permian Intermediate-Mafic Dikes in the Chinese Altai, Northwest China: Implication for a Postaccretion Extensional Scenario. The Journal of Geology 124(4):481–500CrossRefGoogle Scholar
  5. Chen S, Guo ZJ (2010) Time constraints, tectonic setting of Dalabute ophiolitic complex and its significance for Late Paleozoic tectonic evolution in West Junggar. Acta Petrologica Sinica 26:2336–2344 (Chinese with English abstract)Google Scholar
  6. Chen B, Zhu YF (2011) Petrology, geochemistry and zircon U-Pb chronology of gabbro in Darbut ophiolitic mélange, Xinjiang. Acta Petrologica Sinica 27:1746–1758 (Chinese with English abstract)Google Scholar
  7. Chen JF, Han BF, Ji JQ, Zhang L, Xu Z, He GQ, Wang T (2010) Zircon U-Pb ages and tectonic implications of Paleozoic plutons in northern West Junggar, North Xinjiang, China. Lithos 115:137–152CrossRefGoogle Scholar
  8. Cucciniello C, Choudhary AK, Zanetti A, Sheth HC, Vichare S, Pereira R (2014) Mineralogy, geochemistry and petrogenesis of the Khopoli mafic intrusion, Deccan Traps, India. Mineral Petrol 108(3):333–351CrossRefGoogle Scholar
  9. Escuder-Viruete J, Castillo-Carrión M, Pérez-Estaún A (2014) Magmatic relationships between depleted mantle harzburgites, boninitic cumulate gabbros and subduction-related tholeiitic basalts in the Puerto Plata ophiolitic complex, Dominican Republic: Implications for the birth of the Caribbean island-arc. Lithos 196:261–280CrossRefGoogle Scholar
  10. Foley SF, Barth MG, Jenner GA (2000) Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas. Geochim Cosmochim Acta 64(5):933–938CrossRefGoogle Scholar
  11. Gao R, Xiao L, Pirajno F, Wang GC, He XX, Yang G, Yan SW (2014) Carboniferous-Permian extensive magmatism in the West Junggar, Xinjiang, northwestern China: its geochemistry, geochronology, and petrogenesis. Lithos 204:125–143CrossRefGoogle Scholar
  12. Geng HY, Sun M, Yuan C, Xiao WJ, Xian WS, Zhao GC, Zhang LF, Wong K, Wu FY (2009) Geochemical, Sr-Nd and zircon U-Pb-Hf isotopic studies of Late Carboniferous magmatism in the West Junggar, Xinjiang: implications for ridge subduction? Chem Geol 266(3):364–389CrossRefGoogle Scholar
  13. Green DH (1976) Experimental studies on a modal upper mantle composition at high pressure under water saturated and water undersaturated conditions. Can Mineral 14:255–268Google Scholar
  14. Green NL (2006) Influence of slab thermal structure on basalt source regions and melting conditions: REE and HFSE constraints from the Garibaldi volcanic belt, northern Cascadia subduction system. Lithos 87(1):23–49CrossRefGoogle Scholar
  15. Gu PY, Li YJ, Zhang B, Tong LL, Wang JN (2009) LA-ICP-MS zircon U-Pb dating of gabbro in the Darbut ophiolite, West Junggar, China. Acta Petrologica Silica 25:1364–1372 (Chinese with English abstract)Google Scholar
  16. Han BF, Wang SG, Jahn BM, Hong DW, Kagami H, Sun YL (1997) Depleted-mantle source for the Ulungur River A-type granites from North Xinjiang, China: Geochemistry and Nd–Sr isotopic evidence, and implicationsfor Phanerozoic crustal growth. Chem Geol 138:135–159CrossRefGoogle Scholar
  17. Han BF, Ji JQ, Song B, Chen LH, Zhang L (2006) Late Paleozoic vertical growth of Continental crust around the Junggar Basin, Xinjiang, China (Part I): timing of post-collisional plutonism. Acta Petrologica Sinica 22:1077–1086 (Chinese with English abstract)Google Scholar
  18. Hoskin PWO (2004) Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochim Cosmochim Acta 69:637–648CrossRefGoogle Scholar
  19. Humphries DW (1992) The preparation of thin sections of rocks, minerals and ceramics. Royal Microscopical Society, Oxford Science Publications, Microscopy Handbooks (24):83Google Scholar
  20. Irving AJ, Frey FA (1978) Distribution of trace elements between garnet megacrysts and host volcanic liquids of kimberlitic to rhyolitic composition. Geochim Cosmochim Acta 42:771–787CrossRefGoogle Scholar
  21. Jahn BM, Wu FY, Chen B (2000) Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes 23(2):82–92Google Scholar
  22. Kimura JI, Ariskin AA (2014) Calculation of water-bearing primary basalt and estimation of source mantle conditions beneath arcs: PRIMACALC2 model for WINDOWS. Geochemistry, Geophysics Geosystems 15(4):1494–1514CrossRefGoogle Scholar
  23. Kinzler RJ (1997) Melting of mantle peridotite at pressures approaching the spinel to garnet transition: application to midocean ridge basalt petrogenesis. J Geophys Res 102:853–874CrossRefGoogle Scholar
  24. Li XH, Liu Y, Li QL, Guo CH, Chamberlain KR (2009) Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization. Geochemistry, Geophysics Geosystems, 10(4)Google Scholar
  25. Li XH, Tang GQ, Gong B, Yang YH, Hou KJ, Hu ZC, Li QL, Li Y, Li W (2013) Qinghu zircon: A working reference for microbeam analysis of U-Pb age and Hf and O isotopes. Chin Sci Bull 58(36):4647–4654CrossRefGoogle Scholar
  26. Li GM, Cao MJ, Qin KZ, Evans NJ, McInnes BI, Liu YS (2014) Thermal-tectonic history of the Baogutu porphyry Cu deposit, West Junggar as constrained from zircon U-Pb, biotite Ar/Ar and zircon/apatite (U-Th)/He dating. J Asian Earth Sci 79:741–758CrossRefGoogle Scholar
  27. Li D, He DF, Fan C (2015) Geochronology and Sr-Nd-Hf isotopic composition of the granites, enclaves, and dikes in the Karamay area, NW China: Insights into late Carboniferous crustal growth of West Junggar. Geosci Front 6(2):153–173CrossRefGoogle Scholar
  28. Liu XJ, Xu JF, Wang SQ, Hou QY, Bai ZH, Lei M (2009) Geochemistry and dating of E-MORB type mafic rocks from Dalabute ophiolite in West Junggar, Xinjiang and geological implications. Acta Petrologica Sinica 25:1373–1389 (Chinese with English abstract)Google Scholar
  29. Liu B, Han BF, Ren R, Chen JF, Wang ZZ, Zheng B (2017) Petrogenesis and tectonic implications of the Early Carboniferous to the Late Permian Barleik plutons in the West Junggar (NW China). Lithos 272:232–248CrossRefGoogle Scholar
  30. Ludwig KR (2001) Users manual for Isoplot/Ex rev. 2.49, Spec. Publ. 1a, Berkeley Geochronol. Cent., BerkeleyGoogle Scholar
  31. Ma Q, Zheng JP, Xu YG, Griffin WL, Zhang RS (2015) Are continental “adakites” derived from thickened or foundered lower crust? Earth Planet Sci Lett 419:125–133CrossRefGoogle Scholar
  32. Maheo G, Blichert-Toft J, Pin C, Guillot S, Pecher A (2009) Partial melting of mantle and crustal sources beneath South Karakorum, Pakistan: implications for the Miocene geodynamic evolution of the India-Asia convergence zone. J Petrol 50:427–449CrossRefGoogle Scholar
  33. McKenzie DP, O’Nions RK (1991) Partial melt distributions from inversion of rare earth element concentrations. J Petrol 32:1021–1091CrossRefGoogle Scholar
  34. McKenzie DP, O’Nions RK (1995) The source regions of Ocean Island Basalts. J Petrol 36:33–159CrossRefGoogle Scholar
  35. Meschede M (1986) A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chem Geol 56:207–218CrossRefGoogle Scholar
  36. Miyashiro A (1974) Volcanic rock series in island arcs and active continental margins. Am J Sci 274(4):321–355CrossRefGoogle Scholar
  37. Paster TP, Schauwecker DS, Haskin LA (1974) The behavior of some trace elements during solidification of the Skaergaard layered series. Geochim Cosmochim Acta 38(10):1549–1577CrossRefGoogle Scholar
  38. Pearce JA, Cann JR (1973) Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet Sci Lett 19:290–300CrossRefGoogle Scholar
  39. Pearce JA, Norry MJ (1979) Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contrib Mineral Petrol 69:33–47CrossRefGoogle Scholar
  40. Pearce JA, Van der Laan SR, Arculus RJ, Murton BJ, Ishii T, Peate DW, Parkinson I (1992) Boninite and Harzburgite from Leg 125 (Bonin-Mariana Fore-arc): a case study of magma genesis during the initial stage of subduction. In: Fryer P, Pearce JA, Stokking LB (eds), Proc. Ocean Drill. Progr: Science Results 125:623–659Google Scholar
  41. Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to mineralogy petrology 58(1):63–81CrossRefGoogle Scholar
  42. Petri B, Mohn G, Štípská P, Schulmann K, Manatschal G (2016) The Sondalo gabbro contact aureole (Campo unit, Eastern Alps): implications for mid-crustal mafic magma emplacement. Contrib Mineral Petrol 171(5):1–21CrossRefGoogle Scholar
  43. Polat A, Hofmann AW (2003) Alteration and geochemical patterns in the 3.7–3.8 Ga Isua greenstone belt, West Greenland. Precambrian Res 126(3):197–218CrossRefGoogle Scholar
  44. Pollock JC, Hibbard JP (2010) Geochemistry and tectonic significance of the Stony Mountain gabbro, North Carolina: Implications for the Early Paleozoic evolution of Carolinia. Gondwana Res 17(2):500–515CrossRefGoogle Scholar
  45. Qiu T, Zhu YF (2015) Geology and geochemistry of listwaenite-related gold mineralization in the Sayi gold deposit, Xinjiang, NW China. Ore Geol Rev 70:61–79CrossRefGoogle Scholar
  46. Ren R, Han BF, Xu Z, Zhou YZ, Liu B, Zhang L, Chen JF, Su L, Li J, Li XH, Li QL (2014) When did the subduction first initiate in the southern Paleo-Asian Ocean: New constraints from a Cambrian intra-oceanic arc system in West Junggar, NW China. Earth Planet Sci Lett 388:222–236CrossRefGoogle Scholar
  47. Rudnick RL, Gao S (2003) Composition of the continental crust. In: The Crust. (Rudnick RL (ed)) Treatise on Geochemistry 3:1–64Google Scholar
  48. Shen P, Shen YC, Li XH, Pan HD, Zhu HP, Meng L, Dai HW (2012) Northwestern Junggar Basin, Xiemisitai Mountains, China: a geochemical and geochronological approach. Lithos 140:103–118CrossRefGoogle Scholar
  49. Shen P, Pan HD, Xiao WJ, Li XH, Dai HW, Zhu HP (2013a) Early Carboniferous intra-oceanic arc and back-arc basin system in the West Junggar, NW China. Int Geol Rev 55(16):1991–2007CrossRefGoogle Scholar
  50. Shen P, Xiao WJ, Pan HD, Dong LH, Li CF (2013b) Petrogenesis and tectonic settings of the Late Carboniferous Jiamantieliek and Baogutu ore-bearing porphyry intrusions in the southern West Junggar, NW China. J Asian Earth Sci 75:158–173CrossRefGoogle Scholar
  51. Shen P, Pan HD, Cao C, Zhong SH, Li CH (2017) The formation of the Suyunhe large porphyry Mo deposit in the West Junggar terrain, NW China: Zircon U-Pb age, geochemistry and Sr-Nd-Hf isotopic results. Ore Geol Rev 81:808–828CrossRefGoogle Scholar
  52. Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ (2008) Plešovice zircon-a new natural reference material for U-Pb and Hf isotopic microanalysis. Chem Geol 249:1–35CrossRefGoogle Scholar
  53. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221CrossRefGoogle Scholar
  54. Sun SS, Mcdonough WF (1989) Chemical and isotopic systematics of oceanic basalt implications for mantle composition and processes. Geol Soc Spec Publ 42:313–345CrossRefGoogle Scholar
  55. Tang GJ, Wyman DA, Wang Q, Li J, Li ZX, Zhao ZH, Sun WD (2012a) Asthenosphere-lithosphere interaction triggered by a slab window during ridge subduction: trace element and Sr-Nd-Hf-Os isotopic evidence from Late Carboniferous tholeiites in the western Junggar area (NW China). Earth Planet Sci Lett 329:84–96CrossRefGoogle Scholar
  56. Tang GJ, Wang Q, Wyman DA, Li ZX, Zhao ZH, Yang YH (2012b) Late Carboniferous high εNd (t)-εHf (t) granitoids, enclaves and dikes in western Junggar, NW China: ridge-subduction-related magmatism and crustal growth. Lithos 140:86–102CrossRefGoogle Scholar
  57. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford, pp 1–312Google Scholar
  58. Tegner C, Robins B, Reginiussen H, Grundvig S (1999) Assimilation of Crustal Xenoliths in a Basaltic Magma Chamber: Sr and Nd Isotopic Constraints from the Hasvik Layered Intrusion., Norway: J Petrol 40:363–380CrossRefGoogle Scholar
  59. Temizel İ, Arslan M, Ruffet G, Peucat JJ (2012) Petrochemistry, geochronology and Sr–Nd isotopic systematics of the Tertiary collisional and post-collisional volcanic rocks from the Ulubey (Ordu) area, eastern Pontide, NE Turkey: implications for extension-related origin and mantle source characteristics. Lithos 128:126–147CrossRefGoogle Scholar
  60. Wallace ML, Jowitt SM, Saleem A (2015) Geochemistry and petrogenesis of mafic–ultramafic suites of the Irindina Province, Northern Territory, Australia: Implications for the Neoproterozoic to Devonian evolution of central Australia. Lithos 234:61–78CrossRefGoogle Scholar
  61. Walter MJ (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39:29–60CrossRefGoogle Scholar
  62. Wang K, Plank T, Walker JD, Smith EI (2002) A mantle melting profile across the Basin and Range, SW USA. Journal of Geophysical Research: Solid Earth, 107(B1): pages ECV5-1 to ECV5-21Google Scholar
  63. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187CrossRefGoogle Scholar
  64. Willcox A, Buisman I, Sparks RSJ, Brown RJ, Manya S, Schumacher JC, Tuffen H (2015) Petrology, geochemistry and low-temperature alteration of lavas and pyroclastic rocks of the kimberlitic Igwisi Hills volcanoes, Tanzania. Chem Geol 405:82–101CrossRefGoogle Scholar
  65. Wood DA (1980) The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth Planet Sci Lett 50:11–30CrossRefGoogle Scholar
  66. Wu YB, Gao S, Zhang YF, Yang SH, Liu XC, Jiao WF, Liu YS, Yuan HL, Gong HJ, He MC (2009) U-Pb age, trace-element, and Hf-isotope compositions of zircon in a quartz vein from eclogite in the western Dabie Mountains: constraints on fluid flow during early exhumation of ultrahigh-pressure rocks. American Mineralogists 94:303–312CrossRefGoogle Scholar
  67. Xiao WJ, Han CM, Yuan C, Sun M, Lin SF, Chen HL, Li ZL, Li JL, Sun S (2008) Middle Cambrian to Permian subduction-related accretionary orogenesis of NorthernXinjiang, NW China: implications for the tectonic evolution of central Asia. J Asian Earth Sci 32:102–117CrossRefGoogle Scholar
  68. Xu Z, Han BF, Ren R, Zhou YZ, Zhang L, Chen JF, Su L, Li XH, Liu DY (2012) Ultramafic-mafic mélange, island arc and post-collisional intrusions in the Mayile Mountain, West Junggar, China: implications for Paleozoic intra-oceanic subduction-accretion process. Lithos 132:141–161CrossRefGoogle Scholar
  69. Xu Z, Han BF, Ren R, Zhou YZ, Su L (2013) Palaeozoic multiphase magmatism at Barleik Mountain, southern West Junggar, Northwest China: implications for tectonic evolution of the West Junggar. Int Geol Rev 55(5):633–656CrossRefGoogle Scholar
  70. Xu YX, Yang B, Zhang S, Liu Y, Zhu LP, Huang R, Chen C, Li YT, Luo Y (2016) Magnetotelluric Imaging of a Fossil Paleozoic Intra-oceanic Subduction Zone in Western Junggar, NW China. Solid Earth, Journal of Geophysical ResearchGoogle Scholar
  71. Yang GX, Li YJ, Gu PY, Yang BK, Tong LL, Zhang HW (2012) Geochronological and geochemical study of the Darbut Ophiolitic Complex in the West Junggar (NW China): Implications for petrogenesis and tectonic evolution. Gondwana Res 21:1037–1049CrossRefGoogle Scholar
  72. Yang GX, Li YJ, Safonova I, Yi SX, Tong LL, Seltmann R (2014a) Early Carboniferous volcanic rocks of West Junggar in the western Central Asian Orogenic Belt: implications for a supra-subduction system. Int Geol Rev 56(7):823–844CrossRefGoogle Scholar
  73. Yang GX, Li YJ, Yan J, Tong LL, Han X, Wang YB (2014b) Geochronological and geochemical constraints on the origin of the 304 ± 5 Ma Karamay A-type granites from West Junggar, Northwest China: implications for understanding the Central Asian Orogenic Belt. Int Geol Rev 56(4):393–407CrossRefGoogle Scholar
  74. Yi ZY, Huang BC, Xiao WJ, Yang LK, Qiao QQ (2015) Paleomagnetic study of Late Paleozoic rocks in the Tacheng Basin of West Junggar (NW China): implications for the tectonic evolution of the western Altaids. Gondwana Res 27:862–877CrossRefGoogle Scholar
  75. Yin JY, Long XP, Yuan C, Sun M, Zhao GC, Geng HY (2013) A Late Carboniferous–Early Permian slab window in the West Junggar of NW China: Geochronological and geochemical evidence from mafic to intermediate dikes. Lithos 175:146–162CrossRefGoogle Scholar
  76. Yin JY, Chen W, Xiao WJ, Yuan C, Sun M, Tang GJ, Yu S, Long XP, Cai KD, Geng HY, Zhang Y, Liu XY (2015a) Petrogenesis of Early-Permian sanukitoids from West Junggar, Northwest China: Implications for Late Paleozoic crustal growth in Central Asia. Tectonophysics 662:85–397CrossRefGoogle Scholar
  77. Yin JY, Chen W, Yuan C, Yu S, Xiao WJ, Long XP, Li J, Sun JB (2015b) Petrogenesis of Early Carboniferous adakitic dikes, Sawur region, northern West Junggar, NW China: implications for geodynamic evolution. Gondwana Res 27(4):1630–1645CrossRefGoogle Scholar
  78. Yin JY, Chen W, Xiao WJ, Yuan C, Windley BF, Yu S, Cai KD (2017) Late Silurian-early Devonian adakitic granodiorite, A-type and I-type granites in NW Junggar, NW China: partial melting of mafic lower crust and implications for slab roll-back. Gondwana Res 43:55–73CrossRefGoogle Scholar
  79. Zhang HC, Zhu YF (2016) Geology and geochemistry of the Huilvshan gold deposit, Xinjiang, China: Implications for mechanism of gold precipitation. Ore Geol Rev 79:218–240CrossRefGoogle Scholar
  80. Zhang HC, Zhu YF (2017) Genesis of the Mandongshan gold deposit (Xinjiang, NW China): T-P-ƒS2 and phase equilibria constraints from the Au-As-Fe-S system. Ore Geol Rev 83:135–151CrossRefGoogle Scholar
  81. Zhang JE, Xiao WJ, Han CM, Ao SJ, Guo QQ, Ma C (2011) A Devonian to Carboniferous intra-oceanic subduction system in Western Junggar, NW China. Lithos 125:592–606CrossRefGoogle Scholar
  82. Zhang HC, Zhu YF, Feng WY, Tan YW, An F, Zheng JH (2017) Paleozoic intrusive rocks in the Nalati mountain range (NMR), southwest Tianshan: geodynamic evolution based on petrology and geochemical studies. J Earth Sci 28(2):196–217CrossRefGoogle Scholar
  83. Zheng YF, Gao TS, Wu YB, Gong B (2007) Fluid flow during exhumation of deeply subducted continental crust: zircon U-Pb age and O isotope studies of quartz vein in eclogite. J Metamorph Geol 25:267–283CrossRefGoogle Scholar
  84. Zhou TF, Yuan F, Yang WP, He LX, Tan LG, Fan Y, Yue SC (2006) Permian volcanism in the Sawu’er ar ea, western Junggar. Geology in China 33(3):553–558 (Chinese with English abstract)Google Scholar
  85. Zhou TF, Yuan F, Fan Y, Zhang DY, Cooke D, Zhao GC (2008) Granites in the Sawuer region of the west Junggar, Xinjiang Province, China: Geochronological and geochemical characteristics and their geodynamic significance. Lithos 106:191–206CrossRefGoogle Scholar
  86. Zhu YF (2011) Zircon U-Pb and muscovite 40Ar/39Ar geochronology of the gold-bearing Tianger mylonitized granite, granite, Xinjiang, northwest China: Implications for radiometric dating of mylonitized magmatic rocks. Ore Geol Rev 40:108–121CrossRefGoogle Scholar
  87. Zhu YF, Xu X (2006) The discovery of Early Ordovicain ophiolite mélange in Taerbahatai Mts., Xinjiang, NW China. Acta Petrologica Sinica 22(12):2833–2842 (Chinese with English abstract)Google Scholar
  88. Zhu YF, Xu X (2009) Lithology and Zircon SHRIMP Chronology of the Biesituobie Gabbro in Tacheng, Xinjiang. Acta Geol Sinica 83(9):1316–1326 (Chinese with English abstract)Google Scholar
  89. Zhu YF, Sun SH, Gu LB, Ogasawara Y, Jiang N, Honma H (2001) Permian volcanism in the Mongolian orogenic zone, northeast China: geochemistry, magma sources and petrogenesis. Geol Mag 138:101–115CrossRefGoogle Scholar
  90. Zhu YF, Guo X, Song B, Zhang LF, Gu LB (2009) Petrology, Sr-Nd-Hf isotopic geochemistry and zircon chronology of the Late Palaeozoic volcanic rocks in the southwestern Tianshan Mountains, Xinjiang, NW China. Journal of the Geological Society 166:1085–1099CrossRefGoogle Scholar
  91. Zhu YF, Chen B, Xu X, Qiu T, An F (2013) A new geological map of the western Junggar, north Xinjiang (NW China): implications for Paleoenvironmental reconstruction. Episodes 36:205–220Google Scholar
  92. Zhu YF, Xu X, Luo ZH, Shen P, Ma HD, Chen XH, An F, Wei SN (2014) Geological evolution and ore formation in the core part of central Asian metallogenic region. Geological Publishing House:1–202 (in Chinese with English Abstract)Google Scholar
  93. Zhu YF, Chen B, Qiu T (2015) Geology and geochemistry of the Baijiantan-Baikouquan ophiolitic mélanges: implications for geological evolution of west Junggar, Xinjiang, NW China. Geological magazine 152:41–69CrossRefGoogle Scholar
  94. Zhu YF, An F, Feng WY, Zhang HC (2016) Geological Evolution and Huge Ore-Forming Belts in the Core Part of the Central Asian Metallogenic Region. J Earth Sci 27(3):491–506CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  1. 1.Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, China; School of Earth and Space SciencesPeking UniversityBeijingChina

Personalised recommendations