Compositional variations of zirconolite from the Evate apatite deposit (Mozambique) as an indicator of magmatic-hydrothermal conditions during post-orogenic collapse of Gondwana

  • Vratislav Hurai
  • Monika Huraiová
  • Michaela Gajdošová
  • Patrik Konečný
  • Marek Slobodník
  • Pete R. Siegfried
Original Paper
  • 69 Downloads

Abstract

Zirconolite is documented from the Evate apatite-magnetite-carbonate deposit in the circular Monapo Klippe (eastern Mozambique)—a relic of Neoproterozoic nappe thrusted over the Mesoproterozoic basement of the Nampula block. Zirconolite enriched in rare earth elements—REE = Y + Lu+ΣLa–Yb (up to 24.11 wt% REE2O3, 0.596 apfu REE) creates thin rims around spinel and magnetite grains, whereas zirconolite enriched in U and Th (up to 18.88 wt% ThO2 + UO2, 0.293 apfu Th + U) replace the Late Ediacaran (~ 590 Ma) zircon and baddeleyite along contacts with pyrrhotite and magnetite. Both types of zirconolite contain locally increased Nb and Ta concentrations (up to 7.58 wt% Nb2O5 + Ta2O5, 0.202 apfu Nb + Ta). Typical substitutions in zirconolite from Evate involve REE + U,Th → Ca, and M 2++M 5+→Ti + M 3+ (M 2+ = Fe2++Mg, M 3+ = Fe3+, M 5+ = Nb5++Ta5+). In addition, REE-zirconolite is typical of the REE + M 2+ → Ca + M 3+ substitution (M 2+ = Mg, M 3+ = Fe3++Al3+). Hence, Fe3+ predominates over Fe2+ in all types of zirconolite, thus enabling the high REE content in Nb-poor zirconolites to be stored in locally dominant REEZrTiFe3+O7 component known so far only as a synthetic analogue of natural zirconolite. Other types of zirconolite from Evate are dominated by the common CaZrTi2O7 end member, but the aforementioned “synthetic” REEZrTiFe3+O7 accompanied by another ‘synthetic’ (U,Th)ZrFe3 +2O7 component are also abundant. The U,Pb,Th concentrations in U,Th-zirconolites plot discordantly to theoretical isochrons, thus indicating ~ 440 ppm of non-radiogenic excess lead in earlier Nb-rich zirconolite contrasting with secondary Pb loss from later Nb-poor zirconolite. The non-radiogenic Pb-corrected age of the early zirconolite corresponded to 485 ± 9 Ma, within uncertainty limit identical with the 493 ± 10 Ma age of the associated uranothorianite. The variegated chemical composition of zirconolites reflects the complex history of the Evate deposit. Compositional and substitution trends of the REE-zirconolite overlaps that genetically linked with carbonatites, syenites and mafic igneous rocks, whereas the U,Th-zirconolite is reminiscent of hydrothermal-metasomatic deposits. The predominance of trivalent iron in zirconolite most likely reflects strongly oxidizing parental fluids that percolated during episodic Late Ordovician to Late Cambrian rifting of Gondwana.

Keywords

Zirconolite Carbonatite Evate Mozambique Gondwana 

Notes

Acknowledgements

The manuscript benefited from critical comments of P. Downes and an anonymous reviewer. Editorial handling by journal editor A. Möller is also gratefully acknowledged. The work was financially supported from the VEGA grant No. 2/0118/16.

References

  1. Åmli R, Griffin WL (1975) Standards and correction factors for microprobe analysis of REE minerals. Am Mineral 60:599–606Google Scholar
  2. Azzone RG, Ruberti E, Enrich GER, Gomes CB (2009) Zr- and Ba-rich minerals from the Ponte Nova alkaline mafic-ultramafic massif, Southeastern Brazil: indication of an enriched mantle source. Can Mineral 47:1087–1103CrossRefGoogle Scholar
  3. Bellatreccia F, Della Ventura G, Caprilli E, Williams CT, Parodi GC (1999) Crystal-chemistry of zirconolite and calzirtite from Jacupiranga, São Paulo (Brazil). Mineral Mag 63:649–660CrossRefGoogle Scholar
  4. Bellatreccia F, Della Ventura G, Williams T, Lumpkin GR, Smith KL, Colella M (2002) Non-metamict zirconolite polytypes from the feldspathoid-bearing alkali-syenitic ejecta of the Vico volcanic complex (Latium, Italy). Eur J Mineral 14:809–820CrossRefGoogle Scholar
  5. Bingen B, Jacobs J, Viola G, Henderson IHC, Skår Ø, Boyd R, Thomas RJ, Solli A, Key RM, Daudi EXF (2009) Geochronology of the Precambrian crust in the Mozambique belt in NE Mozambique, and implications for Gondwana assembly. Precambrian Res 170:231–255CrossRefGoogle Scholar
  6. Borodin LS, Nazarenko II, Richter TL (1956) The new mineral zirconolite-complex oxide of the AB3O7 type. Dokl Akad Nauk SSSR 110:845–848 (Russian)Google Scholar
  7. Borodin LS, Bykova AB, Kapitonova TA, Pyatenko YuA (1960) New data on zirconolite and niobium variety. Dokl Akad Nauk SSSR 134:1022–1024 (Russian)Google Scholar
  8. Brøgger WC (1890) Die Mineralien der Syenitpegmatitgänge der Südnorwegischen Augit- und Nephelinsyenite. Z Krystallogr Mineral 16:387–396Google Scholar
  9. Brown GM, Emeleus CH, Holland JG, Peckett A, Phillips R (1972) Mineral-chemical variations in Apollo 14 and Apollo 15 basalts and granitic fractions. proceedings of the third lunar science conference, supplement 3. Geochim Cosmochim Ac 1:141–157Google Scholar
  10. Bulakh AG, Nesterov AR, Williams CT, Anisimov IS (1999a) Zirkelite from the Sebl’yavr carbonatite complex, Kola Peninsula, Russia: an X-ray and electron microprobe study of a partially metamict mineral. Mineral Mag 62:837–846CrossRefGoogle Scholar
  11. Bulakh AG, Nesterov AR, Anastasenko GF, Anisimov IS (1999b) Crystal morphology and intergrowths of calzirtite Ca2Zr5Ti2O16, zirkelite (Ti,Ca,Zr)O2 – x, zirconolite CaZrTi2O7 in phoscorites and carbonatites of the Kola Peninsula (Russia). Neues Jb Miner Monat 1:11–20Google Scholar
  12. Busche FD, Prinz M, Keil K, Kurat G (1972) Lunar zirkelite - a uranium-bearing phase. Earth Planet Sci Lett 14:313–321CrossRefGoogle Scholar
  13. Carlier G, Lorand J-P (2003) Petrogenesis of zirconolite-bearing Mediterranean-type lamproite from the Peruvian Altiplano (Andean Cordillera). Lithos 69:15–35CrossRefGoogle Scholar
  14. Carlier G, Lorand J-P (2008) Zr-rich accessory minerals (titanite, perrierite, zirconolite, baddeleyite) record strong oxidation associated with magma mixing in the south Peruvian potassic province. Lithos 104:54–70CrossRefGoogle Scholar
  15. Chukanov NV, Krivovichev SV, Pakhomova AS, Pekov IV, Schäfer Ch, Vigasina MF, Van KV (2014) Laachite, (Ca,Mn)2Zr2Nb2TiFeO14, a new zirconolite-related mineral from the Eifel volcanic region, Germany. Eur J Mineral 26:103–111CrossRefGoogle Scholar
  16. Cílek V (1989) Industrial minerals of Mozambique. Czech Geological Office, Prague, ISBN 80-7075-027-8Google Scholar
  17. Coelho AA, Cheary RW, Smith KL (1997) Analysis and structural determination of Nd-substituted zirconolite-4M. J Solid State Chem 129:346–359CrossRefGoogle Scholar
  18. Čopjaková R, Houzar S (2009) Zirconolite in marmor near Krahulov and age of HT/LP metamorphism of Moldanubicum in contact aureole of the Třebíč pluton. Acta Mus Morav Sci Geol 94:67–76 (Czech)Google Scholar
  19. Čopjaková R, Vrána S, Houzar S, Červený A, Malec J (2008) Zirconolite, baddeleyite and geikielite in clinohumite-spinel-forsterite marbles from the surroundings of Horažďovice and Prachatice, Southwestern Bohemia. Acta Mus Morav Sci Geol 93:37–51 (Czech)Google Scholar
  20. Daszinnies MC, Jacobs J, Wartho J-A, Grantham GH (2009) Post pan-African thermotectonic evolution of the north Mozambican basement and its implication for the Gondwana rifting. Inferences from 40Ar/39Ar hornblende, biotite and titanite fission-track dating. In: Lisker F, Ventura B, Glasmacher UA (eds), Thermochronological methods: from palaeotemperature constraints to landscape evolution models. Geol Soc London Spec Pub 324:261–286Google Scholar
  21. De Hoog JCM, van Bergen MJ (2000) Volatile-induced transport of HFSE, REE, Th and U in arc magmas: evidence from zirconolite-bearing vesicles in potassic lavas of Lewotolo volcano (Indonesia). Contrib Mineral Petr 139:485–502CrossRefGoogle Scholar
  22. Della Ventura G, Bellatreccia F, Williams CT (2000) Zirconolite with significant REEZrNb(Mn,Fe)O7 from a xenolith of the Laacher See eruptive center, Eifel volcanic region, Germany. Can Mineral 38:57–65CrossRefGoogle Scholar
  23. Downes PJ, Dunkley DJ, Fletcher IR, McNaughton NJ, Rasmussen B, Jaques AL, Verrall M, Sweetapple MT (2016) Zirconolite, zircon and monazite-(Ce) U-Th-Pb age constraints on the emplacement, deformation and alteration history of the Cummins Range Carbonatite Complex, Halls Creek Orogen, Kimberley region, Western Australia. Miner Petrol 110:199–222CrossRefGoogle Scholar
  24. Fowler M, Williams CT (1986) Zirconolite from the Glen Dessary syenite: a comparison with other Scottish zirconolites. Mineral Mag 50:326–328CrossRefGoogle Scholar
  25. Gieré R (1986) Zirconolite, allanite and hoegbomite in a marble skarn from the Bergell contact aureole: implications for mobility of Ti, Zr and REE. Contrib Mineral Petr 93:459–470CrossRefGoogle Scholar
  26. Gieré R (1990) Hydrothermal mobility of Ti, Zr and REE: examples from the Bergell and Adamello contact aureoles (Italy). Terra Nova 2:60–67CrossRefGoogle Scholar
  27. Gieré R, Williams CT (1992) REE-bearing minerals in a Ti-rich vein from the Adamello contact aureole (Italy). Contrib Mineral Petr 112:83–100Google Scholar
  28. Gieré R, Williams CT, Lumpkin GR (1998) Chemical characteristics of natural zirconolite. Schweiz Miner Petrog 78:433–459Google Scholar
  29. Grantham GH, Macey PH, Ingram BA, Roberts MP, Armstrong RA, Hokada T, Shiraishi K, Jackson C, Bisnath A, Manhiça V (2008) Terrane correlation between Antarctica, Mozambique and Sri Lanka: comparison of geochronology, lithology, structure and metamorphism and possible implications for the geology of southern Africa and Antarctica. In: Satish-Kumar M, Motoyoshi Y, Osanai Y, Hiroi Y, Siraishi K (eds) Geodynamic evolution of East Antarctica: a key to the East-West Gondwana connection. Geol Soc London Spec Pub 308:91–119 Google Scholar
  30. Grantham DH, Macey PH, Horie K, Kawakami T, Ishikawa M, Satish-Kumar M, Tsuchiya N, Graser P, Azevedo S (2013) Comparison of the metamorphic history of the Monapo Complex, northern Mozambique and Balchenfjella and Austhameren areas, Sør Rondane, Antarctica: Implications for the Kuunga Orogeny and the amalgamation of N. and S. Gondwana. Precambrian Res 234:85–135CrossRefGoogle Scholar
  31. Harley SL (1994) Mg-Al yttrian zirconolite in a partially melted sapphirine granulite, Vestvold Hills, East Antarctica. Mineral Mag 58:259–269CrossRefGoogle Scholar
  32. Holland HD, Gottfried D (1955) The effect of nuclear radiation on the structure of zircon. Acta Crystallogr 8:291–300CrossRefGoogle Scholar
  33. Hornig I, Wörner G (1991) Zirconolite-bearing ultra-potassic veins in a mantle-xenolith from Mt. Melbourne Volcanic Field, Victoria Land, Antarctica. Contrib Mineral Petr 106:355–366CrossRefGoogle Scholar
  34. Houzar S, Gadas P, Čopjaková R (2010) Mineral assemblage of geikielite-baddeleyite in dolomitic marbles of Moravian Moldanubicum in contact aureole of the Třebíč pluton. Acta Mus Morav Sci Geol 95:71–82 (Czech)Google Scholar
  35. Hurai V, Paquette J-L, Huraiová M, Slobodník M, Hvožďara P, Siegfried PR, Gajdošová M, Milovská S (2017) New insights into the origin of the Evate apatite-iron oxide-carbonate deposit, Northeastern Mozambique, constrained by mineralogy, textures, thermochronometry, and fluid inclusions. Ore Geol Rev 80:1072–1091CrossRefGoogle Scholar
  36. Jafar M, Sengupta P, Achary SN, Tyagi AK (2014) Phase evolution and microstructural studies in CaZrTi2O7 (zirconolite)–Sm2Ti2O7 (pyrochlore) system. J Eur Ceram Soc 34:4373–4381CrossRefGoogle Scholar
  37. Karlsson JP (2006) An investigation of the felsic Ramiane Pluton, in the Monapo Structure, Northern Moçambique. Examensarbeten I Geologi vid Lunds universitet, Berggrundsgeologi 202Google Scholar
  38. Keller J, Brey G, Lorenz V, Sachs P (1990) IAVCEI 1990 pre-conference excursion 2A: volcanism and petrology of the Upper Rhinegraben (Urach-Hegau-Kaiserstuhl). IAVCEI Int Volcanol Congress, Mainz 1990 field guide 22Google Scholar
  39. Kogarko LN, Sorokhtina NV, Zaitsev VA, Senin VG (2009) Rare metal mineralization of calcite carbonatites from the Cape Verde Archipelago. Geochem Int 47:531–549CrossRefGoogle Scholar
  40. Konečný P, Siman P, Holický I, Janák M, Kollárová V (2004) Method of monazite dating using an electron microprobe. Miner Slov 36:225–235 (Slovak)Google Scholar
  41. Kukharenko AA, Orlova MP, Bulakh AG, Bagdasarov EA, Rimskaya-Kosakova OM, Nefedov EI, Ilinskii GA, Sergeev AS, Abakumova NB (1965) Caledonian complex of alkaline ultrabasic rocks and carbonatites of the Kola Peninsula and North Karelia. Nedra Publishers, Moscow (Russian)Google Scholar
  42. Larsen AO (1996) Rare earth minerals from the syenite pegmatites in the Oslo region, Norway. In: Jones AP, Wall F, Williams CT (eds) Rare earth minerals: chemistry, origin and ore deposits. Chapman and Hall, London, pp 151–166Google Scholar
  43. Lorand JP, Cottin JY (1987) A new natural occurrence of zirconolite (CaZrTi2O7) and baddeleyite (ZrO2) in basic cumulates: the Laouni layered intrusion (Southern Hoggar, Algeria). Mineral Mag 51:671–676CrossRefGoogle Scholar
  44. Lumpkin GR, Smith KL, Blackford MG, Gieré R, Williams CT (1998) The crystalline-amorphous transformation in natural zirconolite: evidence for long-term annealing. Mat Res Soc Symp Proc 506:215–222CrossRefGoogle Scholar
  45. Macey PH, Thomas RJ, Grantham GH, Ingram BA, Jacobs J, Armstrong RA, Roberts MP, Bingen B, Hollick L, de Kock GS, Viola G, Bauer W, Gonzales E, Bjerkgård T, Henderson IHC, Sandstad JS, Cronwright MS, Harley S, Solli A, Nordgulen Ø, Motuza G, Daudi E, Manhiça V (2010) Mesoproterozoic geology of the Nampula Block, northern Mozambique: Tracing fragments of Mesoproterozoic crust in the heart of Gondwana. Precambrian Res 182:124–148CrossRefGoogle Scholar
  46. Macey PH, Miller JA, Rowe CD, Grantham GH, Siegfried P, Armstrong RA, Kemp J, Bacalau J (2013) Geology of the Monapo Klippe, NE Mozambique and its significance for assembly of central Gondwana. Precambrian Res 233:259–281CrossRefGoogle Scholar
  47. Mariano AN, Roeder PL (1989) Wöhlerite: chemical composition, cathodoluminiscence and environment of crystallization. Can Mineral 27:709–720Google Scholar
  48. Mazzi F, Munno R (1983) Calciobetafite (new mineral from the pyrochlore group) and related minerals from Campi Flegrei, Italy: crystal structures of polymignite and zirkelite: comparison with pyrochlore and zirconolite. Am Mineral 68:262–276Google Scholar
  49. Melusso L, Guarino V, Lustrino M, Morra V, de Gennaro R (2017) The REE- and HFSE-bearing phases in the Itatiaia alkaline complex (Brazil) and geochemical evolution of feldspar-rich felsic melts. Mineral Mag 81:217–250CrossRefGoogle Scholar
  50. Merlet C (1992) Accurate description of surface ionization in electron probe microanalysis: an improved formulation. X-Ray Spectrom 21:229–238CrossRefGoogle Scholar
  51. Montel JM, Foret S, Veschambre M, Nicollet C, Provost A (1996) Electron microprobe dating of monazite. Chem Geol 131:37–53CrossRefGoogle Scholar
  52. Novák M, Gadas P (2010) Internal structure and mineralogy of a zoned anorthite- and grossular-bearing leucotonalitic pegmatite in serpentinized lherzolite at Ruda nad Moravou, Staré Město unit, Czech Republic. Can Mineral 48:629–650CrossRefGoogle Scholar
  53. Pascal M-L, Di Muro A, Fonteilles M, Principe C (2009) Zirconolite and calzirtite in banded forsterite-spinel-calcite skarn ejecta from the 1631 eruption of Vesuvius: inferences for magma-wallrock interactions. Mineral Mag 73:333–356CrossRefGoogle Scholar
  54. Pinna P, Jourde G, Calvez JY, Mroz JP, Marques JM (1993) The Mozambique Belt in northern Mozambique: Neoproterozoic (1100 – 850 Ma) crustal growth and tectogenesis, and superimposed Pan-African (800 – 550 Ma) tectonism. Precambrian Res 62:1–59CrossRefGoogle Scholar
  55. Platt G, Wall F, Williams CT, Woolley AR (1987) Zirconolite, chevkinite and other rare earth minerals from nepheline syenites and peralkaline granites and syenites of the Chilwa Alkaline Province, Malawi. Mineral Mag 51:253–263CrossRefGoogle Scholar
  56. Proyer A, Baziotis I, Mposkos E, Rhede D (2014) Ti- and Zr-minerals in calcite-dolomite marbles from the ultrahigh-pressure Kimi Complex, Rhodope Mountains, Greece: implications for the P-T evolution based on reaction textures, petrogenetic grids and geothermobarometry. Am Mineral 99:1429–1448CrossRefGoogle Scholar
  57. Purtscheller F, Tessadri R (1985) Zirconolite and baddeleyite from metacarbonates of the Oetztal-Stubai complex (Northern Tyrol, Austria). Mineral Mag 49:523–529CrossRefGoogle Scholar
  58. Pyle JM, Spear FS, Wark DA (2002) Electron microprobe analysis of REE in apatite, monazite and xenotime: protocols and pitfalls. In: Kohn ML, Rakovan J, Hughes JM (eds) Phosphates. Geochemical, geobiological and materials importance. Rev Mineral Geochem, vol 48. Mineral Soc Am, Chantilly, pp 337–362Google Scholar
  59. Raber E, Haggerty SE (1979) Zircon-oxide reactions in diamond bearing kimberlites. In: Boyd FR, Boctor HR (eds) Kimberlites, diatremes and diamonds: their geology, petrology, and geochemistry. Proc Sec Int Kimberlite Conf 1:229–240Google Scholar
  60. Rajesh VJ, Yokoyama K, Santosh M, Arai S, Oh CW, Kim SW (2006) Zirconolite and baddeleyite in an ultramafic suite from Southern India: Early Ordovician carbonatite-type melts associated with extensional collapse of the Gondwana crust. J Geol 114:171–188CrossRefGoogle Scholar
  61. Rasmussen B, Fletcher I (2004) Zirconolite: a new U-Pb chronometer for igneous rocks. Geology 32:785–788CrossRefGoogle Scholar
  62. Rasmussen B, Fletcher IR, Muhling JR (2008) Pb/Pb geochronology, petrography and chemistry of Zr-rich accessory minerals (zirconolite, tranquillityite and baddeleyite) in mare basalt 10047. Geochim Cosmochim Ac 72:5799–5818CrossRefGoogle Scholar
  63. Roeder E, Weiblen PW (1973) Petrology of some lithic fragments from Luna 20. Geochim Cosmochim Ac 37:1031–1052CrossRefGoogle Scholar
  64. Santos JJA, Pimenta ACS, Rosa MLS, Conceição H (2015) First occurrence of zirconolite in the South Bahia Alkaline Province: syenite intrusion of Floresta Azul Alkali Complex, Bahia, NE Brazil. Sci Plena 11:095301Google Scholar
  65. Sheng YJ, Hutcheon ID, Wassergur GJ (1991) Origin of plagioclase–olivine inclusions in carbonaceous chondrites. Geochim Cosmochim Ac 55:581–599CrossRefGoogle Scholar
  66. Siegfried PR (1999) The Monapo structure and intrusive complex – an example of large scale alkaline metasomatism in northern Mozambique. In: Stanley CJ, Rankin AH, Bodnar RJ, Naden J, Yardley BWD, Criddle AJ, Hagni RD, Gize AP, Pasava J, Fleet AJ, Seltmann R, Halls C, Stemprok M, Williamson B, Herrington RJ, Hill RET, Prichard HM, Wall F, Williams CT, McDonald I, Wilkinson JJ, Cooke D, Cook NJ, Marshall BJ, Spry P, Zaw K, Meinert L, Sundblad K, Scott P, Clark SHB, Valsami-Jones E, Beukes NJ, Stein HJ, Hannah JL, Neubauer F, Blundell DJ, Alderton DHM, Smith MP, Mulshaw S, Ixer RA (eds) Mineral deposits: processes to processing. Balkema, Rotterdam, pp 683–686Google Scholar
  67. Silva LC (1979) Consideracoes geológicas e estudos preliminaries sobre inclusoes primárias, fluidas e sólidas em apatites de rochas carbonatíticas e ijolitas da ihla de Santiago (República de Cabo Verde). Comun Serv Geol Portugal 64:261–268Google Scholar
  68. Smith KL, Lumpkin GR (1993) Structural features of zirconolite, hollandite and perovskite, the major waste-bearing phases in Synroc. In: Boland JN, Fitz Gerald JD (eds) Defects and processes in the solid state: Geoscience applications, McLaren vol. Elsevier, Amsterdam, pp 401–422Google Scholar
  69. Sonnenthal EL (1992) Geochemistry of dendritic anorthosites and associated pegmatites in Skaergaard Intrusion, East Greenland: evidence for metasomatism by a chlorine-rich fluid. J Volcanol Geoth Res 52:209–230CrossRefGoogle Scholar
  70. Stucki A, Trommsdorff V, Gunther D (2001) Zirconolite in metarodingites of Penninic Mesozoic ophiolites, Central Alps. Schweiz Miner Petrog 81:257–265Google Scholar
  71. Traversa G, Gomes BC, Brotzu P, Buraglini N, Morbidelli L, Principato SM, Ronca S, Ruberti E (2000) Petrography and mineral chemistry of carbonatites and mica-rich rocks from the Araxá complex (Alto Paranaíba Province, Brazil). An Acad Bras Cienc 73:71–98CrossRefGoogle Scholar
  72. Tropper P, Harlov D, Krenn E, Finger F, Rhede D, Bernhard F (2007) Zr-bearing minerals as indicators for the polymetamorphic evolution of the eastern, lower Austroalpine nappes (Stubenberg Granite contact aureole, Styria, Eastern Alps, Austria). Lithos 95:72–86CrossRefGoogle Scholar
  73. Ueda K, Jacobs J, Thomas RJ, Kosler J, Jourdan F, Matola R (2012) Delamination-induced late-tectonic deformation and high-grade metamorphism of the Proterozoic Nampula Complex, Northern Mozambique. Precambrian Res 196–197:275–294CrossRefGoogle Scholar
  74. Vance ER, Lumpkin GR, Carter ML, Cassidy DJ, Ball CJ, Day RA, Begg BD (2002) Incorporation of uranium in zirconolite (CaZrTi2O7. J Am Ceram Soc 85:1853–1859CrossRefGoogle Scholar
  75. Vartiainen H (1980) The petrography, mineralogy and petrochemistry of the Sokli carbonatite massif, Northern Finland. B Geol Surv Fin 313:1–126Google Scholar
  76. Verwoerd WJ (1986) Mineral deposits associated with carbonatites and alkaline rocks. In: Anhaeusser CR, Maske S (eds) Mineral deposits of southern Africa. Geol Soc S Africa, Johannesburg, pp 2173–2191Google Scholar
  77. Viola G, Henderson IHC, Bingen B, Thomas RJ, Smethurst MA, de Azavedo S(2008)Growth and collapse of a deeply eroded orogen: insights from structural and geochronological constraints on the Pan-African evolution of NE Mozambique.Tectonics27:TC50009CrossRefGoogle Scholar
  78. Wark DA, Reid AF, Lovering JF, El Goresy A (1973) Zirconolite (versus zirkelite) in lunar rocks. Lunar Sci IV Conf, Lunar Sci Inst Houston, Texas, pp 764–766Google Scholar
  79. Wieser ME, Holden N, Coplen TB, Böhlke JK, Berglund M, Brand WA, De Biévre P, Gröning M, Loss RD, Meija J, Hirata T, Prohaska T, Schoenberg R, O´Connor G, Walczyk T, Yoneda S, Zhu X-K (2013) Atomic weights of elements 2011 (IUPAC Technical Report). Pure Appl Chem 85:1047–1078CrossRefGoogle Scholar
  80. Williams CT (1996) The occurrence of niobian zirconolite, pyrochlore and baddeleyite in the Kovdor carbonatite complex, Kola Peninsula, Russia. Mineral Mag 60:639–646CrossRefGoogle Scholar
  81. Williams CT, Gieré R (1988) Metasomatic zonation of REE in zirconolite from a marble skarn at the Bergell contact aureole (Switzerland/Italy). Schweiz Miner Petrog 68:133–140Google Scholar
  82. Williams CT, Gieré R (1996) Zirconolite: a review of localities worldwide, and a compilation of its chemical composition. B Nat Hist Mus London 52:1–24Google Scholar
  83. Williams CT, Platt RG (1993) Zirconolite-(Nd) and associated minerals from the Schryburt Lake carbonatite, Canada. Min Soc Spring Meet 1993, Extended Abstracts, 157–158Google Scholar
  84. Zaccarini F, Stumpfl EF, Garuti G (2004) Zirconolite and Zr-Th-U minerals in chromites of the Finero complex, Western Alps, Italy: evidence for carbonatite-type metasomatism in a subcontinental mantle plume. Can Mineral 42:1825–1845CrossRefGoogle Scholar
  85. Zaitsev AN, Williams CT, Jeffries TE, Strekopytov S, Moutte J, Ivashchenkova OV, Spratt J, Petrov SV, Wall F, Seltmann R (2015) Rare earth elements in phoscorites and carbonatites of the Devonian Kola Alkaline Province, Russia: examples from Kovdor, Khibina, Vuoriyarvi and Turiy Mys complexes. Ore Geol Rev 64:477–498CrossRefGoogle Scholar
  86. Zakrzewski MA, Lustenhouwer WJ, Nugteren HJ (1992) Rare-earth minerals yttrian zirconolite and allanite-(Ce)* and associated minerals from Koberg mine, Bergslagen, Sweden. Mineral Mag 56:27–35CrossRefGoogle Scholar
  87. Zhang A, Hsu W, Li Q, Liu Y, Jiang Y, Tang G (2010) SIMS Pb/Pb dating of Zr-rich minerals in lunar meteorites Miller Range 05035 and LaPaz Icefield 02224: Implications for the petrogenesis of mare basalts. Sci China D 53:327–334CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  • Vratislav Hurai
    • 1
  • Monika Huraiová
    • 2
  • Michaela Gajdošová
    • 2
  • Patrik Konečný
    • 3
  • Marek Slobodník
    • 4
  • Pete R. Siegfried
    • 5
  1. 1.Slovak Academy of SciencesEarth Science InstituteBratislavaSlovakia
  2. 2.Department of Mineralogy and PetrologyComenius UniversityBratislavaSlovakia
  3. 3.State Geological Institute D. ŠtúrBratislavaSlovakia
  4. 4.Institute of Geological SciencesMasaryk UniversityBrnoCzech Republic
  5. 5.Geoafrica Prospecting Services ccWindhoekNamibia

Personalised recommendations