Skip to main content

Advertisement

Log in

Rare earth element geochemistry of feldspars: examples from Fe-oxide Cu-Au systems in the Olympic Cu-Au Province, South Australia

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Rare earth element (REE) fractionation trends in feldspars are reported from Olympic Dam (including Wirrda Well and Phillip’s Ridge) and Cape Donington (Port Lincoln), for comparison with two other igneous-hydrothermal terranes within the eastern Gawler Craton: Moonta-Wallaroo and Hillside. The case studies were selected as they represent ~ 1590 Ma Hiltaba Suite and/or ~ 1845 − 1810 Ma Donington Suite granites, and, aside from Cape Donington, are associated with Mesoproterozoic iron-oxide copper gold (IOCG)-type mineralization. Both plagioclase and alkali feldspar were analyzed within selected samples with the purpose of constraining and linking changes in REE concentrations and fractionation trends in feldspars to local and whole-rock textures and geochemistry. Two unique, reproducible fractionation trends were obtained for igneous plagioclase and alkali feldspars, distinguished from one another by light rare earth element enrichment, Eu-anomalies and degrees of fractionation (e.g. La/Lu slopes). Results for hydrothermal albite and K-feldspar indicate that REE concentrations and fractionation trends are generally inherited from igneous predecessors, however in some instances, significant amounts of REE appear to have been lost to the fluid. These results may have critical implications for the formation of world-class IOCG systems, in which widespread alkali metasomatism plays a key role by altering the physical and chemical properties of the host rocks during early stages of IOCG formation, as well as trapping trace elements (including REE).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Modified from Reid and Fabris (2015). b Geological sketch map of bedrock in the Olympic Dam region displaying sampled drillholes and other prospects and localities within the area

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aigner-Torres M, Blundy J, Ulmer P, Pettke T (2007) Laser ablation ICPMS study of trace element partitioning between plagioclase and basaltic melts: an experimental approach. Contrib Mineral Petr 153:647–667

    Article  Google Scholar 

  • Barton M (2014) Iron oxide (–Cu–Au–REE–P–Ag–U–Co) systems. In: Holland HD, Turrekian KK (eds) Treatise on geochemistry 2nd ed, vol 13. Elsevier, Amsterdam, pp 515–541

    Chapter  Google Scholar 

  • Bau M (1991) Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chem Geol 93:219–230

    Article  Google Scholar 

  • Bau M, Dulski P (1995) Comparative study of yttrium and rare-earth element behaviours in fluorine-rich hydrothermal fluids. Contrib Mineral Petr 119:213–223

    Article  Google Scholar 

  • Bédard JH (2006) Trace element partitioning in plagioclase feldspar. Geochim Cosmochim Acta 70:3717–3742

    Article  Google Scholar 

  • Belousova E, Griffin W, O’Reilly SY (2006) Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling: examples from Eastern Australian granitoids. J Petrol 47:329–353

    Article  Google Scholar 

  • BHP (2016) Annual report 2016. http://www.bhp.com/-/media/bhp/documents/investors/annual-reports/2016/bhpbillitonannualreport2016_interactive.pdf. Accessed 13 Sept 2017

  • Bindeman IN, Davis AM (2000) Trace element partitioning between plagioclase and melt: investigation of dopant influence on partition behavior. Geochim Cosmochim Acta 64:2863–2878

    Article  Google Scholar 

  • Bindeman IN, Davis AM, Drake MJ (1998) Ion microprobe study of plagioclase-basalt partition experiments at natural concentration levels of trace elements. Geochim Cosmochim Acta 62:1175–1193

    Article  Google Scholar 

  • Blundy JD, Wood BJ (1991) Crystal-chemical controls on the partitioning of Sr and Ba between plagioclase feldspar, silicate melts, and hydrothermal solutions. Geochim Cosmochim Acta 55:193–209

    Article  Google Scholar 

  • Brugger J, Etschmann B, Pownceby M, Liu W, Grundler P, Brewe D (2008) Oxidation state of europium in scheelite: tracking fluid–rock interaction in gold deposits. Chem Geol 257:26–33

    Article  Google Scholar 

  • Bychkov A, Kotelnikov A, Romanenko I, Senderov E (1989) Effect of isomorphic replacement of silicon by phosphorus on structural peculiarities of feldspars. Geochem Int 2:310–313

    Google Scholar 

  • Ciobanu CL, Wade BP, Cook NJ, Mumm AS, Giles D (2013) Uranium-bearing hematite from the Olympic Dam Cu–U–Au deposit, South Australia: a geochemical tracer and reconnaissance Pb–Pb geochronometer. Precambrian Res 238:129–147

    Article  Google Scholar 

  • Conor CH (1995) Moonta-Wallaroo region: an interpretation of the geology of the Maitland and Wallaroo 1: 100 000 sheet areas. Mines and Energy South Australia, Open File Envelope 8886

  • Conor C, Raymond O, Baker T, Teale G, Say P, Lowe G (2010) Alteration and mineralisation in the moonta-wallaroo Cu-Au mining field region, Olympic domain, South Australia. In: Porter TM (ed) Hydrothermal iron oxide copper-gold & related deposits: a global perspective, vol 3. PGC Publishing, Adelaide, pp 1–24

    Google Scholar 

  • Courtney-Davies L, Zhu Z, Ciobanu CL, Wade BP, Cook NJ, Ehrig K, Cabral AR, Kennedy A (2016) Matrix-matched iron-oxide laser ablation ICP-MS U–Pb geochronology using mixed solution standards. Minerals 6:85. https://doi.org/10.3390/min6030085

    Article  Google Scholar 

  • Cowley WM, Conor CH, Zang WL (2003) New and revised Proterozoic stratigraphic units on northern Yorke Peninsula. MESA J 29:46–58

    Google Scholar 

  • Creaser RA (1989) The geology and petrology of middle proterozoic felsic magmatism of the Stuart Shelf, South Australia. Unpublished PhD thesis, La Trobe University, Melbourne

  • Creaser RA (1996) Petrogenesis of a Mesoproterozoic quartz latite-granitoid suite from the Roxby downs area, South Australia. Precambrian Res 79:371–394

    Article  Google Scholar 

  • D’Arco P, Piriou B (1989) Fluorescence spectra of Eu3+ in synthetic polycrystalline anorthite: distribution of Eu3+ in the structure. Am Mineral 74:191–199

    Google Scholar 

  • Ehrig K (2013) Geology of the Wirrda Well IOCG deposit. Powerpoint presentation, 10th Annual SA Exploration and Mining Conference, Adelaide. http://www.saexplorers.com.au

  • Ehrig K, McPhie J, Kamenetsky V (2012) Geology and mineralogical zonation of the Olympic Dam iron oxide Cu-U-Au-Ag deposit, South Australia. In: Hedenquist JW, Harris M, Camus F (eds) Geology and genesis of major copper deposits and districts of the world: a tribute to Richard H. Sillitoe, vol 16. SEG Spec Publ, pp 237–267

  • Elderfield H, Greaves MJ (1982) The rare earth elements in seawater. Nature 296:214–219

    Article  Google Scholar 

  • Fanning CM (1997) Geochronological synthesis of southern Australia. Part II. The Gawler Craton. South Australian Department of Mines and Energy, Open file envelope 8918 (unpubl.)

  • Fanning CM (2002) Gawler craton: synthesis of recent SHRIMP U–Pb geochronology. In: Gawler Craton 2002: State of Play. Department of Primary Industries and Resources Workshop Proceedings (CD). Office of Minerals and Energy Resources, South Australia

  • Fanning CM, Flint RB, Parker AJ, Ludwig KR, Blisset AH (1988) Refined Proterozoic evolution of the Gawler craton, South Australia, through U-Pb zircon geochronology. Precambrian Res 40:363–386

    Article  Google Scholar 

  • Ferris GM, Schwarz MP, Heithersay P (2002) The geological framework, distribution, and controls of Fe-oxide Cu–Au mineralisation in the Gawler Craton, South Australia: Part 1 - geological and tectonic framework. In: Porter TM (ed) Hydrothermal iron oxide copper-gold & related deposits: a global perspective, vol 2. PGC Publishing, Adelaide, pp 9–32

    Google Scholar 

  • Fleet ME (1988) Tetrahedral-site occupancies in reedmergnerite and synthetic boron albite (NaBSi3O8). Am Mineral 77:76–84

    Google Scholar 

  • Garcia D, Pascal M-L, Roux J (1996) Hydrothermal replacement of feldspars in igneous enclaves of the Velay granite and the genesis of myrmekites. Eur J Mineral 8:703–718

    Article  Google Scholar 

  • Gast PW (1968) Trace element fractionation and the origin of tholeiitic and alkaline magma types. Geochim Cosmochim Acta 32:1057–1086

    Article  Google Scholar 

  • Goldschmidt VM (1937) The principles of distribution of chemical elements in minerals and rocks. The seventh Hugo Müller Lecture, delivered before the Chemical Society on March 17th, 1937. J Chem Soc (Resumed), 655–673

  • Haas JR, Shock EL, Sassani DC (1995) Rare earth elements in hydrothermal systems: estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures. Geochim Cosmochim Acta 59:4329–4350

    Article  Google Scholar 

  • Haynes DW, Cross KC, Bills RT, Reed MH (1995) Olympic Dam ore genesis; a fluid-mixing model. Econ Geol 90:281–307

    Article  Google Scholar 

  • Hayward N, Skirrow R (2010) Geodynamic setting and controls on iron oxide Cu-Au (± U) ore in the Gawler craton, South Australia. In: Porter TM (ed) Hydrothermal Iron Oxide Copper-Gold & Related Deposits: A Global Perspective, vol 3–4. PGP Publishing, Adelaide, pp 105–131

    Google Scholar 

  • Henderson P (1984) General geochemical properties and abundances of the rare earth elements. In: Henderson P (ed), Rare earth element geochemistry, 1st edn. Elsevier

  • Hövelmann J, Putnis A, Geisler T, Schmidt BC, Golla-Schindler U (2010) The replacement of plagioclase feldspars by albite: observations from hydrothermal experiments. Contrib Mineral Petrol 159:43–59

    Article  Google Scholar 

  • Huang Q, Kamenetsky VS, McPhie J, Ehrig K, Meffre S, Maas R, Thompson J, Kamenetsky M, Chambefort I, Apukhtina O, Hu Y (2015) Neoproterozoic (ca. 820–830 Ma) mafic dykes at Olympic Dam., South Australia: links with the Gairdner large igneous province. Precambrian Res 271:160–172

    Article  Google Scholar 

  • Huang Q, Kamenetsky VS, Ehrig K, McPhie J, Kamenetsky M, Cross K, Meffre S, Agangi A, Chambefort I, Direen NG, Maas R, Apukhtina O (2016) Olivine-phyric basalt in the Mesoproterozoic Gawler silicic large igneous province, South Australia: examples at the Olympic Dam iron oxide Cu–U–Au–Ag deposit and other localities. Precambrian Res 281:185–199

  • Ismail R, Ciobanu CL, Cook NJ, Teale GS, Giles D, Mumm AS, Wade B (2014) Rare earths and other trace elements in minerals from skarn assemblages, Hillside iron oxide–copper–gold deposit, Yorke Peninsula, South Australia. Lithos 184–187:456–477

    Article  Google Scholar 

  • Jagodzinski E (2005) Compilation of SHRIMP U-Pb geochronological data, Olympic Domain, Gawler Craton. South Australia, 2001–2003. Geoscience Australia Record 2005/020

  • Jagodzinski EA (2014) The age of magmatic and hydrothermal zircon at Olympic Dam, Australian Earth Sciences Convention Proceedings, Geological Society of Australia Abstracts 110:260

  • Jagodzinski EA, Hand M, Reid AJ (2012) SHRIMP U-Pb geochronology of Archaen to Palaeoproterozoic rocks from the Southern Eyre Peninsula. Report book 2012/00015, Department for Manufacturing, Innovation, Trade, Resources and Energy, Government of South Australia

  • Johnson JP, Cross KC (1995) U-Pb geochronological constraints on the genesis of the Olympic Dam Cu-U-Au-Ag deposit, South Australia. Econ Geol 90:1046–1063

    Article  Google Scholar 

  • Kimata M (1988) The crystal structure of non-stoichiometric Eu-anorthite: an explanation of the Eu-positive anomaly. Mineral Mag 52:257–265

    Article  Google Scholar 

  • Kneip H-J, Liebau F (1994) Feldspars with trivalent non-tetrahedral cations: experimental studies in the system NaAlSi3O8-CaAl2Si2O8-LaAl3SiO8. Eur J Mineral 6:87–98

    Article  Google Scholar 

  • Kontonikas-Charos A, Ciobanu CL, Cook NJ (2014) Albitization and redistribution of REE and Y in IOCG systems: insights from Moonta-Wallaroo, Yorke Peninsula, South Australia. Lithos 208–209:178–201

    Article  Google Scholar 

  • Kontonikas-Charos A, Ciobanu CL, Cook NJ, Ehrig K, Kamenetsky VS (2015) Deuteric coarsening and albitization in Hiltaba granites from the Olympic Dam IOCG deposit, South Australia. Proceedings, Mineral Resources in a Sustainable World, 13th Biennial SGA Meeting, Nancy, France, August 2015, 3:1099–1102

  • Kontonikas-Charos A, Ciobanu CL, Cook NJ, Ehrig K, Krneta S, Kamenetsky VS (2017a) Feldspar evolution in the Roxby Downs Granite, host to Fe-oxide Cu-Au-(U) mineralisation at Olympic Dam, South Australia. Ore Geol Rev 80:838–859

    Article  Google Scholar 

  • Kontonikas-Charos A, Ciobanu CL, Cook NJ, Ehrig K, Ismail R, Krneta S, Basak A (2017b) Feldspar mineralogy and rare earth element (re)mobilization in iron-oxide copper gold systems from South Australia: a nanoscale study. Mineral Mag. https://doi.org/10.1180/minmag.2017.081.040

    Google Scholar 

  • Krneta S, Ciobanu CL, Cook NJ, Ehrig K, Kontonikas-Charos A (2016) Apatite at Olympic Dam, South Australia: a petrogenetic tool. Lithos 262:470–485

    Article  Google Scholar 

  • Krneta S, Cook NJ, Ciobanu CL, Ehrig K, Kontonikas-Charos A (2017) The Wirrda Well and Acropolis prospects, Gawler Craton, South Australia: insights into evolving fluid conditions through apatite chemistry. J Geochem Explor 181:276–291

    Article  Google Scholar 

  • London D, Černý P, Loomis JL, Pan JJ (1990) Phosphorus in alkali feldspars of rare-element granitic pegmatites. Can Mineral 28:771–786

    Google Scholar 

  • Lottermoser B (1992) Rare earth elements and hydrothermal ore formation processes. Ore Geol Rev 7:25–41

    Article  Google Scholar 

  • Mauger AJ, Ehrig K, Kontonikas-Charos A, Ciobanu CL, Cook NJ, Kamenetsky VS (2016) Alteration at the Olympic Dam IOCG-U deposit: insights into distal to proximal feldspar and phyllosilicate chemistry from infrared reflectance spectroscopy. Aust J Earth Sci 63:959–972

    Google Scholar 

  • McDonough WF, Sun S-S (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • McPhie J, DellaPasqua F, Allen SR, Lackie MA (2008) Extreme effusive eruptions: palaeoflow data on an extensive felsic lava in the Mesoproterozoic Gawler range volcanics. J Volcanol Geoth Res 172:148–161

    Article  Google Scholar 

  • Migdisov AA, Williams-Jones A (2014) Hydrothermal transport and deposition of the rare earth elements by fluorine-bearing aqueous liquids. Miner Deposita 49:987–997

    Article  Google Scholar 

  • Migdisov AA, Williams-Jones A, Brugger J, Caporuscio F (2016) Hydrothermal transport, deposition, and fractionation of the REE: experimental data and thermodynamic calculations. Chem Geol 439:13–42

    Article  Google Scholar 

  • Morad S, El-Ghali M, Caja M, Sirat M, Al-Ramadan K, Mansurbeg H (2010) Hydrothermal alteration of plagioclase in granitic rocks from proterozoic basement of SE Sweden. Geol J 45:105–116

    Article  Google Scholar 

  • Morales-Ruano S, Both RA, Golding SD (2002) A fluid inclusion and stable isotope study of the Moonta copper–gold deposits, South Australia: evidence for fluid immiscibility in a magmatic hydrothermal system. Chem Geol 192:211–226

    Article  Google Scholar 

  • Mortimer GE (1984) Early to middle proterozoic granitoids, basaltic dykes and associated layered rocks of SE Eyre Peninsula, South Australia. Unpublished PhD thesis. University of Adelaide

  • Oliver NH, Cleverley JS, Mark G, Pollard PJ, Fu B, Marshall LJ, Rubenach MJ, Williams PJ, Baker T (2004) Modeling the role of sodic alteration in the genesis of iron oxide-copper-gold deposits, Eastern Mount Isa block, Australia. Econ Geol 99:1145–1176

    Article  Google Scholar 

  • Papike JJ (1988) Chemistry of the rock-forming silicates: Multiple-chain, sheet, and framework structures. Rev Geophys 26:407–444

    Article  Google Scholar 

  • Parker AJ (1993) Gawler craton. Cleve and Moonta subdomains. South Aust Geol Surv Bull 54:51–68

    Google Scholar 

  • Parsons I, Thompson P, Lee MR, Cayzer N (2005) Alkali feldspar microtextures as provenance indicators in siliciclastic rocks and their role in feldspar dissolution during transport and diagenesis. J Sediment Res 75:921–942

    Article  Google Scholar 

  • Parsons I, Magee CW, Allen CM, Shelley JMG, Lee MR (2009) Mutual replacement reactions in alkali feldspars II: trace element partitioning and geothermometry. Contrib Mineral Petrol 157:663–687

    Article  Google Scholar 

  • Pearce NJ, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Geoanal Res 21:115–144

    Article  Google Scholar 

  • Perez RJ, Boles JR (2005) An empirically derived kinetic model for albitization of detrital plagioclase. Am J Sci 305:312–343

    Article  Google Scholar 

  • Pun A, Papike J, Layne G (1997) Subsolidus REE partitioning between pyroxene and plagioclase in cumulate eucrites: an ion microprobe investigation. Geochim Cosmochim Acta 61:5089–5097

    Article  Google Scholar 

  • Putnis A (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineral Mag 66:689–708

    Article  Google Scholar 

  • Reeve JS, Cross KC, Smith RN, Oreskes N (1990) Olympic Dam copper-uranium-gold-silver deposit. Geology of the mineral deposits of Australia Papua New Guinea 2:1009–1035

  • Reid AJ, Fabris A (2015) Influence of preexisting low metamorphic grade sedimentary successions on the distribution of iron oxide copper-gold mineralization in the Olympic Cu-Au province, Gawler Craton. Econ Geol 110:2147–2157

    Article  Google Scholar 

  • Ren M (2004) Partitioning of Sr, Ba, Rb, Y, and LREE between alkali feldspar and peraluminous silicic magma. Am Mineral 89:1290–1303

    Article  Google Scholar 

  • Schilling J-G, Winchester J (1967) Rare-earth fractionation and magmatic processes. In: Runcorn SK (ed) Mantles of the earth and terrestrial planets. Interscience Publ, New York, pp 267–283

    Google Scholar 

  • Skirrow RG, Bastrakov EN, Barovich K, Fraser GL, Creaser RA, Fanning MC, Raymond OL, Davidson GJ (2007) Timing of iron oxide Cu-Au-(U) hydrothermal activity and Nd isotope constraints on metal sources in the Gawler craton, South Australia. Econ Geol 102:1441–1470

    Article  Google Scholar 

  • Smith JV (1974) Feldspar minerals. Volume 1. Crystal structure and physical properties. Springer-Verlag

  • Smith M, Henderson P, Jeffries T, Long J, Williams C (2004) The rare earth elements and uranium in garnets from the Beinn an Dubhaich Aureole, Skye, Scotland, UK: constraints on processes in a dynamic hydrothermal system. J Petrol 45:457–484

    Article  Google Scholar 

  • Stix J, Gorton MP (1990) Variations in trace element partition coefficients in sanidine in the Cerro Toledo Rhyolite, Jemez Mountains, New Mexico: effects of composition, temperature, and volatiles. Geochim Cosmochim Acta 54:2697–2708

    Article  Google Scholar 

  • Towell DG, Winchester JW, Spirn RV (1965) Rare-earth distributions in some rocks and associated minerals of the batholith of southern California. J Geophys Res 70:3485–3496

    Article  Google Scholar 

  • Van Achterbergh E, Ryan CG, Griffin WL (2001) GLITTER user’s manual: on-line interactive data reduction for the LA-ICP-MS microprobe. GEMOC Version 4:72

  • Wang Y, Wang Y, Merino E (1995) Dynamic weathering model: constraints required by coupled dissolution and pseudomorphic replacement. Geochim Cosmochim Acta 59:1559–1570

    Article  Google Scholar 

Download references

Acknowledgements

Staff at Adelaide Microscopy assisted with microanalysis. Constructive comments by Panagiotis Voudouris, an anonymous reviewer and journal editor William Guenthner are gratefully acknowledged. BHP Olympic Dam kindly provided financial support and access to Olympic Dam samples and facilities. We also acknowledge the ‘FOX’ project (Trace elements in iron oxides), supported by BHP and the South Australian Government Mining and Petroleum Services Centre of Excellence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alkis Kontonikas-Charos.

Additional information

Editorial handling: W. Guenthner

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 122 KB)

Appendix 1 - details of analytical methodology

Appendix 1 - details of analytical methodology

Electron probe microanalysis (EPMA)

Standards, X-ray lines, count times and typical minimum detection limits (mdl) for this work are given in the table below.

Element

Standard

X-ray line

Count time (s) peak/background

Average mdl

(ppm)

Na

Albite

Na Kα

20/10

120

K

Sanidine

K Kα

20/10

130

Ca

Wollastonite

Ca Kα

20/10

120

Fe

Almandine

Fe Kα

20/10

350

Al

Almandine

Al Kα

20/10

130

Si

Sanidine

Si Kα

20/10

150

Ba

Barite

Ba Kα

20/10

300

Sr

Celestite

Sr Lα

20/10

600

Laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS)

All multi-element LA-ICP-MS data was collected on a Resonetics M-50-LR 193-nm Excimer laser microprobe coupled to an Agilent 7700cx Quadrupole ICP-MS (Adelaide Microscopy). Trace element spot analysis was carried out using a uniform spot size diameter of 40 μm for plagioclase and alkali feldspars. The laser system was operated at pulse rates of 10 Hz and power levels of 50% corresponding to laser energy output around 6 – 9 J/cm-2, giving an ablation rate of approximately 1.5 μm/s-1. The following set of isotopes were monitored: 23Na, 24Mg, 27Al, 29Si, 31P, 39K, 43Ca, 45Sc, 47Ti, 48Ti, 49Ti, 51V, 53Cr, 55Mn, 57Fe, 58Fe, 59Co, 60Ni, 65Cu, 66Zn, 69Ga, 75As, 85Rb, 88Sr 89Y, 90Zr, 93Nb, 95Mo, 118Sn, 133Cs, 137Ba, 139La, 140Ce, 141Pr, 146Nd, 147Sm, 153Eu, 157Gd, 159Tb, 163Dy, 165Ho, 166Er, 169Tm, 172Yb, 175Lu, 178Hf, 181Ta, 182W, 206Pb, 207Pb, 208Pb, 232Th and 238U. Dwell times of 0.05 s were used for Y, REEs, Pb, Th and U, whereas 0.01 s was used for other elements. Average minimum detection limits for Y, REE, Pb, Th and U are given in the table below. Analysis time for each spot analysis was a uniform 90 s, comprising a 30-s measurement of background (laser-off), and 60-second analysis of the unknown (laser-on). Standard reference materials for all mineral matrices were NIST-610 using coefficients given by Pearce et al. (1997). Standards were run after each 20 – 24 unknowns; detection limits were calculated for each element in each spot analysis. Internal calibration was achieved using ideal concentration values for Al for feldspars. Data reduction was performed using Glitter software (Van Achterbergh et al. 2001).

Element

mdl (ppm)

Element

mdl (ppm)

Y

0.05

Dy

0.05

La

0.02

Ho

0.01

Ce

0.02

Er

0.04

Pr

0.01

Tm

0.02

Nd

0.08

Yb

0.05

Sm

0.06

Lu

0.02

Eu

0.03

Pb

0.09

Gd

0.09

Th

0.02

Tb

0.01

U

0.01

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kontonikas-Charos, A., Ciobanu, C.L., Cook, N.J. et al. Rare earth element geochemistry of feldspars: examples from Fe-oxide Cu-Au systems in the Olympic Cu-Au Province, South Australia. Miner Petrol 112, 145–172 (2018). https://doi.org/10.1007/s00710-017-0533-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-017-0533-z

Keywords

Navigation