Mineralogy and Petrology

, Volume 112, Issue 2, pp 145–172 | Cite as

Rare earth element geochemistry of feldspars: examples from Fe-oxide Cu-Au systems in the Olympic Cu-Au Province, South Australia

  • Alkis Kontonikas-Charos
  • Cristiana L. Ciobanu
  • Nigel J. Cook
  • Kathy Ehrig
  • Sasha Krneta
  • Vadim S. Kamenetsky
Original Paper

Abstract

Rare earth element (REE) fractionation trends in feldspars are reported from Olympic Dam (including Wirrda Well and Phillip’s Ridge) and Cape Donington (Port Lincoln), for comparison with two other igneous-hydrothermal terranes within the eastern Gawler Craton: Moonta-Wallaroo and Hillside. The case studies were selected as they represent ~ 1590 Ma Hiltaba Suite and/or ~ 1845 − 1810 Ma Donington Suite granites, and, aside from Cape Donington, are associated with Mesoproterozoic iron-oxide copper gold (IOCG)-type mineralization. Both plagioclase and alkali feldspar were analyzed within selected samples with the purpose of constraining and linking changes in REE concentrations and fractionation trends in feldspars to local and whole-rock textures and geochemistry. Two unique, reproducible fractionation trends were obtained for igneous plagioclase and alkali feldspars, distinguished from one another by light rare earth element enrichment, Eu-anomalies and degrees of fractionation (e.g. La/Lu slopes). Results for hydrothermal albite and K-feldspar indicate that REE concentrations and fractionation trends are generally inherited from igneous predecessors, however in some instances, significant amounts of REE appear to have been lost to the fluid. These results may have critical implications for the formation of world-class IOCG systems, in which widespread alkali metasomatism plays a key role by altering the physical and chemical properties of the host rocks during early stages of IOCG formation, as well as trapping trace elements (including REE).

Keywords

Iron-oxide copper gold (IOCG)-type mineralization Plagioclase Alkali feldspar Rare earth elements Fractionation trends Alteration 

Notes

Acknowledgements

Staff at Adelaide Microscopy assisted with microanalysis. Constructive comments by Panagiotis Voudouris, an anonymous reviewer and journal editor William Guenthner are gratefully acknowledged. BHP Olympic Dam kindly provided financial support and access to Olympic Dam samples and facilities. We also acknowledge the ‘FOX’ project (Trace elements in iron oxides), supported by BHP and the South Australian Government Mining and Petroleum Services Centre of Excellence.

Supplementary material

710_2017_533_MOESM1_ESM.docx (122 kb)
Supplementary material 1 (DOCX 122 KB)

References

  1. Aigner-Torres M, Blundy J, Ulmer P, Pettke T (2007) Laser ablation ICPMS study of trace element partitioning between plagioclase and basaltic melts: an experimental approach. Contrib Mineral Petr 153:647–667CrossRefGoogle Scholar
  2. Barton M (2014) Iron oxide (–Cu–Au–REE–P–Ag–U–Co) systems. In: Holland HD, Turrekian KK (eds) Treatise on geochemistry 2nd ed, vol 13. Elsevier, Amsterdam, pp 515–541CrossRefGoogle Scholar
  3. Bau M (1991) Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chem Geol 93:219–230CrossRefGoogle Scholar
  4. Bau M, Dulski P (1995) Comparative study of yttrium and rare-earth element behaviours in fluorine-rich hydrothermal fluids. Contrib Mineral Petr 119:213–223CrossRefGoogle Scholar
  5. Bédard JH (2006) Trace element partitioning in plagioclase feldspar. Geochim Cosmochim Acta 70:3717–3742CrossRefGoogle Scholar
  6. Belousova E, Griffin W, O’Reilly SY (2006) Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling: examples from Eastern Australian granitoids. J Petrol 47:329–353CrossRefGoogle Scholar
  7. Bindeman IN, Davis AM (2000) Trace element partitioning between plagioclase and melt: investigation of dopant influence on partition behavior. Geochim Cosmochim Acta 64:2863–2878CrossRefGoogle Scholar
  8. Bindeman IN, Davis AM, Drake MJ (1998) Ion microprobe study of plagioclase-basalt partition experiments at natural concentration levels of trace elements. Geochim Cosmochim Acta 62:1175–1193CrossRefGoogle Scholar
  9. Blundy JD, Wood BJ (1991) Crystal-chemical controls on the partitioning of Sr and Ba between plagioclase feldspar, silicate melts, and hydrothermal solutions. Geochim Cosmochim Acta 55:193–209CrossRefGoogle Scholar
  10. Brugger J, Etschmann B, Pownceby M, Liu W, Grundler P, Brewe D (2008) Oxidation state of europium in scheelite: tracking fluid–rock interaction in gold deposits. Chem Geol 257:26–33CrossRefGoogle Scholar
  11. Bychkov A, Kotelnikov A, Romanenko I, Senderov E (1989) Effect of isomorphic replacement of silicon by phosphorus on structural peculiarities of feldspars. Geochem Int 2:310–313Google Scholar
  12. Ciobanu CL, Wade BP, Cook NJ, Mumm AS, Giles D (2013) Uranium-bearing hematite from the Olympic Dam Cu–U–Au deposit, South Australia: a geochemical tracer and reconnaissance Pb–Pb geochronometer. Precambrian Res 238:129–147CrossRefGoogle Scholar
  13. Conor CH (1995) Moonta-Wallaroo region: an interpretation of the geology of the Maitland and Wallaroo 1: 100 000 sheet areas. Mines and Energy South Australia, Open File Envelope 8886Google Scholar
  14. Conor C, Raymond O, Baker T, Teale G, Say P, Lowe G (2010) Alteration and mineralisation in the moonta-wallaroo Cu-Au mining field region, Olympic domain, South Australia. In: Porter TM (ed) Hydrothermal iron oxide copper-gold & related deposits: a global perspective, vol 3. PGC Publishing, Adelaide, pp 1–24Google Scholar
  15. Courtney-Davies L, Zhu Z, Ciobanu CL, Wade BP, Cook NJ, Ehrig K, Cabral AR, Kennedy A (2016) Matrix-matched iron-oxide laser ablation ICP-MS U–Pb geochronology using mixed solution standards. Minerals 6:85.  https://doi.org/10.3390/min6030085 CrossRefGoogle Scholar
  16. Cowley WM, Conor CH, Zang WL (2003) New and revised Proterozoic stratigraphic units on northern Yorke Peninsula. MESA J 29:46–58Google Scholar
  17. Creaser RA (1989) The geology and petrology of middle proterozoic felsic magmatism of the Stuart Shelf, South Australia. Unpublished PhD thesis, La Trobe University, MelbourneGoogle Scholar
  18. Creaser RA (1996) Petrogenesis of a Mesoproterozoic quartz latite-granitoid suite from the Roxby downs area, South Australia. Precambrian Res 79:371–394CrossRefGoogle Scholar
  19. D’Arco P, Piriou B (1989) Fluorescence spectra of Eu3+ in synthetic polycrystalline anorthite: distribution of Eu3+ in the structure. Am Mineral 74:191–199Google Scholar
  20. Ehrig K (2013) Geology of the Wirrda Well IOCG deposit. Powerpoint presentation, 10th Annual SA Exploration and Mining Conference, Adelaide. http://www.saexplorers.com.au
  21. Ehrig K, McPhie J, Kamenetsky V (2012) Geology and mineralogical zonation of the Olympic Dam iron oxide Cu-U-Au-Ag deposit, South Australia. In: Hedenquist JW, Harris M, Camus F (eds) Geology and genesis of major copper deposits and districts of the world: a tribute to Richard H. Sillitoe, vol 16. SEG Spec Publ, pp 237–267Google Scholar
  22. Elderfield H, Greaves MJ (1982) The rare earth elements in seawater. Nature 296:214–219CrossRefGoogle Scholar
  23. Fanning CM (1997) Geochronological synthesis of southern Australia. Part II. The Gawler Craton. South Australian Department of Mines and Energy, Open file envelope 8918 (unpubl.)Google Scholar
  24. Fanning CM (2002) Gawler craton: synthesis of recent SHRIMP U–Pb geochronology. In: Gawler Craton 2002: State of Play. Department of Primary Industries and Resources Workshop Proceedings (CD). Office of Minerals and Energy Resources, South AustraliaGoogle Scholar
  25. Fanning CM, Flint RB, Parker AJ, Ludwig KR, Blisset AH (1988) Refined Proterozoic evolution of the Gawler craton, South Australia, through U-Pb zircon geochronology. Precambrian Res 40:363–386CrossRefGoogle Scholar
  26. Ferris GM, Schwarz MP, Heithersay P (2002) The geological framework, distribution, and controls of Fe-oxide Cu–Au mineralisation in the Gawler Craton, South Australia: Part 1 - geological and tectonic framework. In: Porter TM (ed) Hydrothermal iron oxide copper-gold & related deposits: a global perspective, vol 2. PGC Publishing, Adelaide, pp 9–32Google Scholar
  27. Fleet ME (1988) Tetrahedral-site occupancies in reedmergnerite and synthetic boron albite (NaBSi3O8). Am Mineral 77:76–84Google Scholar
  28. Garcia D, Pascal M-L, Roux J (1996) Hydrothermal replacement of feldspars in igneous enclaves of the Velay granite and the genesis of myrmekites. Eur J Mineral 8:703–718CrossRefGoogle Scholar
  29. Gast PW (1968) Trace element fractionation and the origin of tholeiitic and alkaline magma types. Geochim Cosmochim Acta 32:1057–1086CrossRefGoogle Scholar
  30. Goldschmidt VM (1937) The principles of distribution of chemical elements in minerals and rocks. The seventh Hugo Müller Lecture, delivered before the Chemical Society on March 17th, 1937. J Chem Soc (Resumed), 655–673Google Scholar
  31. Haas JR, Shock EL, Sassani DC (1995) Rare earth elements in hydrothermal systems: estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures. Geochim Cosmochim Acta 59:4329–4350CrossRefGoogle Scholar
  32. Haynes DW, Cross KC, Bills RT, Reed MH (1995) Olympic Dam ore genesis; a fluid-mixing model. Econ Geol 90:281–307CrossRefGoogle Scholar
  33. Hayward N, Skirrow R (2010) Geodynamic setting and controls on iron oxide Cu-Au (± U) ore in the Gawler craton, South Australia. In: Porter TM (ed) Hydrothermal Iron Oxide Copper-Gold & Related Deposits: A Global Perspective, vol 3–4. PGP Publishing, Adelaide, pp 105–131Google Scholar
  34. Henderson P (1984) General geochemical properties and abundances of the rare earth elements. In: Henderson P (ed), Rare earth element geochemistry, 1st edn. ElsevierGoogle Scholar
  35. Hövelmann J, Putnis A, Geisler T, Schmidt BC, Golla-Schindler U (2010) The replacement of plagioclase feldspars by albite: observations from hydrothermal experiments. Contrib Mineral Petrol 159:43–59CrossRefGoogle Scholar
  36. Huang Q, Kamenetsky VS, McPhie J, Ehrig K, Meffre S, Maas R, Thompson J, Kamenetsky M, Chambefort I, Apukhtina O, Hu Y (2015) Neoproterozoic (ca. 820–830 Ma) mafic dykes at Olympic Dam., South Australia: links with the Gairdner large igneous province. Precambrian Res 271:160–172CrossRefGoogle Scholar
  37. Huang Q, Kamenetsky VS, Ehrig K, McPhie J, Kamenetsky M, Cross K, Meffre S, Agangi A, Chambefort I, Direen NG, Maas R, Apukhtina O (2016) Olivine-phyric basalt in the Mesoproterozoic Gawler silicic large igneous province, South Australia: examples at the Olympic Dam iron oxide Cu–U–Au–Ag deposit and other localities. Precambrian Res 281:185–199Google Scholar
  38. Ismail R, Ciobanu CL, Cook NJ, Teale GS, Giles D, Mumm AS, Wade B (2014) Rare earths and other trace elements in minerals from skarn assemblages, Hillside iron oxide–copper–gold deposit, Yorke Peninsula, South Australia. Lithos 184–187:456–477CrossRefGoogle Scholar
  39. Jagodzinski E (2005) Compilation of SHRIMP U-Pb geochronological data, Olympic Domain, Gawler Craton. South Australia, 2001–2003. Geoscience Australia Record 2005/020Google Scholar
  40. Jagodzinski EA (2014) The age of magmatic and hydrothermal zircon at Olympic Dam, Australian Earth Sciences Convention Proceedings, Geological Society of Australia Abstracts 110:260Google Scholar
  41. Jagodzinski EA, Hand M, Reid AJ (2012) SHRIMP U-Pb geochronology of Archaen to Palaeoproterozoic rocks from the Southern Eyre Peninsula. Report book 2012/00015, Department for Manufacturing, Innovation, Trade, Resources and Energy, Government of South AustraliaGoogle Scholar
  42. Johnson JP, Cross KC (1995) U-Pb geochronological constraints on the genesis of the Olympic Dam Cu-U-Au-Ag deposit, South Australia. Econ Geol 90:1046–1063CrossRefGoogle Scholar
  43. Kimata M (1988) The crystal structure of non-stoichiometric Eu-anorthite: an explanation of the Eu-positive anomaly. Mineral Mag 52:257–265CrossRefGoogle Scholar
  44. Kneip H-J, Liebau F (1994) Feldspars with trivalent non-tetrahedral cations: experimental studies in the system NaAlSi3O8-CaAl2Si2O8-LaAl3SiO8. Eur J Mineral 6:87–98CrossRefGoogle Scholar
  45. Kontonikas-Charos A, Ciobanu CL, Cook NJ (2014) Albitization and redistribution of REE and Y in IOCG systems: insights from Moonta-Wallaroo, Yorke Peninsula, South Australia. Lithos 208–209:178–201CrossRefGoogle Scholar
  46. Kontonikas-Charos A, Ciobanu CL, Cook NJ, Ehrig K, Kamenetsky VS (2015) Deuteric coarsening and albitization in Hiltaba granites from the Olympic Dam IOCG deposit, South Australia. Proceedings, Mineral Resources in a Sustainable World, 13th Biennial SGA Meeting, Nancy, France, August 2015, 3:1099–1102Google Scholar
  47. Kontonikas-Charos A, Ciobanu CL, Cook NJ, Ehrig K, Krneta S, Kamenetsky VS (2017a) Feldspar evolution in the Roxby Downs Granite, host to Fe-oxide Cu-Au-(U) mineralisation at Olympic Dam, South Australia. Ore Geol Rev 80:838–859CrossRefGoogle Scholar
  48. Kontonikas-Charos A, Ciobanu CL, Cook NJ, Ehrig K, Ismail R, Krneta S, Basak A (2017b) Feldspar mineralogy and rare earth element (re)mobilization in iron-oxide copper gold systems from South Australia: a nanoscale study. Mineral Mag.  https://doi.org/10.1180/minmag.2017.081.040 Google Scholar
  49. Krneta S, Ciobanu CL, Cook NJ, Ehrig K, Kontonikas-Charos A (2016) Apatite at Olympic Dam, South Australia: a petrogenetic tool. Lithos 262:470–485CrossRefGoogle Scholar
  50. Krneta S, Cook NJ, Ciobanu CL, Ehrig K, Kontonikas-Charos A (2017) The Wirrda Well and Acropolis prospects, Gawler Craton, South Australia: insights into evolving fluid conditions through apatite chemistry. J Geochem Explor 181:276–291CrossRefGoogle Scholar
  51. London D, Černý P, Loomis JL, Pan JJ (1990) Phosphorus in alkali feldspars of rare-element granitic pegmatites. Can Mineral 28:771–786Google Scholar
  52. Lottermoser B (1992) Rare earth elements and hydrothermal ore formation processes. Ore Geol Rev 7:25–41CrossRefGoogle Scholar
  53. Mauger AJ, Ehrig K, Kontonikas-Charos A, Ciobanu CL, Cook NJ, Kamenetsky VS (2016) Alteration at the Olympic Dam IOCG-U deposit: insights into distal to proximal feldspar and phyllosilicate chemistry from infrared reflectance spectroscopy. Aust J Earth Sci 63:959–972Google Scholar
  54. McDonough WF, Sun S-S (1995) The composition of the Earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  55. McPhie J, DellaPasqua F, Allen SR, Lackie MA (2008) Extreme effusive eruptions: palaeoflow data on an extensive felsic lava in the Mesoproterozoic Gawler range volcanics. J Volcanol Geoth Res 172:148–161CrossRefGoogle Scholar
  56. Migdisov AA, Williams-Jones A (2014) Hydrothermal transport and deposition of the rare earth elements by fluorine-bearing aqueous liquids. Miner Deposita 49:987–997CrossRefGoogle Scholar
  57. Migdisov AA, Williams-Jones A, Brugger J, Caporuscio F (2016) Hydrothermal transport, deposition, and fractionation of the REE: experimental data and thermodynamic calculations. Chem Geol 439:13–42CrossRefGoogle Scholar
  58. Morad S, El-Ghali M, Caja M, Sirat M, Al-Ramadan K, Mansurbeg H (2010) Hydrothermal alteration of plagioclase in granitic rocks from proterozoic basement of SE Sweden. Geol J 45:105–116CrossRefGoogle Scholar
  59. Morales-Ruano S, Both RA, Golding SD (2002) A fluid inclusion and stable isotope study of the Moonta copper–gold deposits, South Australia: evidence for fluid immiscibility in a magmatic hydrothermal system. Chem Geol 192:211–226CrossRefGoogle Scholar
  60. Mortimer GE (1984) Early to middle proterozoic granitoids, basaltic dykes and associated layered rocks of SE Eyre Peninsula, South Australia. Unpublished PhD thesis. University of AdelaideGoogle Scholar
  61. Oliver NH, Cleverley JS, Mark G, Pollard PJ, Fu B, Marshall LJ, Rubenach MJ, Williams PJ, Baker T (2004) Modeling the role of sodic alteration in the genesis of iron oxide-copper-gold deposits, Eastern Mount Isa block, Australia. Econ Geol 99:1145–1176CrossRefGoogle Scholar
  62. Papike JJ (1988) Chemistry of the rock-forming silicates: Multiple-chain, sheet, and framework structures. Rev Geophys 26:407–444CrossRefGoogle Scholar
  63. Parker AJ (1993) Gawler craton. Cleve and Moonta subdomains. South Aust Geol Surv Bull 54:51–68Google Scholar
  64. Parsons I, Thompson P, Lee MR, Cayzer N (2005) Alkali feldspar microtextures as provenance indicators in siliciclastic rocks and their role in feldspar dissolution during transport and diagenesis. J Sediment Res 75:921–942CrossRefGoogle Scholar
  65. Parsons I, Magee CW, Allen CM, Shelley JMG, Lee MR (2009) Mutual replacement reactions in alkali feldspars II: trace element partitioning and geothermometry. Contrib Mineral Petrol 157:663–687CrossRefGoogle Scholar
  66. Pearce NJ, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Geoanal Res 21:115–144CrossRefGoogle Scholar
  67. Perez RJ, Boles JR (2005) An empirically derived kinetic model for albitization of detrital plagioclase. Am J Sci 305:312–343CrossRefGoogle Scholar
  68. Pun A, Papike J, Layne G (1997) Subsolidus REE partitioning between pyroxene and plagioclase in cumulate eucrites: an ion microprobe investigation. Geochim Cosmochim Acta 61:5089–5097CrossRefGoogle Scholar
  69. Putnis A (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineral Mag 66:689–708CrossRefGoogle Scholar
  70. Reeve JS, Cross KC, Smith RN, Oreskes N (1990) Olympic Dam copper-uranium-gold-silver deposit. Geology of the mineral deposits of Australia Papua New Guinea 2:1009–1035Google Scholar
  71. Reid AJ, Fabris A (2015) Influence of preexisting low metamorphic grade sedimentary successions on the distribution of iron oxide copper-gold mineralization in the Olympic Cu-Au province, Gawler Craton. Econ Geol 110:2147–2157CrossRefGoogle Scholar
  72. Ren M (2004) Partitioning of Sr, Ba, Rb, Y, and LREE between alkali feldspar and peraluminous silicic magma. Am Mineral 89:1290–1303CrossRefGoogle Scholar
  73. Schilling J-G, Winchester J (1967) Rare-earth fractionation and magmatic processes. In: Runcorn SK (ed) Mantles of the earth and terrestrial planets. Interscience Publ, New York, pp 267–283Google Scholar
  74. Skirrow RG, Bastrakov EN, Barovich K, Fraser GL, Creaser RA, Fanning MC, Raymond OL, Davidson GJ (2007) Timing of iron oxide Cu-Au-(U) hydrothermal activity and Nd isotope constraints on metal sources in the Gawler craton, South Australia. Econ Geol 102:1441–1470CrossRefGoogle Scholar
  75. Smith JV (1974) Feldspar minerals. Volume 1. Crystal structure and physical properties. Springer-VerlagGoogle Scholar
  76. Smith M, Henderson P, Jeffries T, Long J, Williams C (2004) The rare earth elements and uranium in garnets from the Beinn an Dubhaich Aureole, Skye, Scotland, UK: constraints on processes in a dynamic hydrothermal system. J Petrol 45:457–484CrossRefGoogle Scholar
  77. Stix J, Gorton MP (1990) Variations in trace element partition coefficients in sanidine in the Cerro Toledo Rhyolite, Jemez Mountains, New Mexico: effects of composition, temperature, and volatiles. Geochim Cosmochim Acta 54:2697–2708CrossRefGoogle Scholar
  78. Towell DG, Winchester JW, Spirn RV (1965) Rare-earth distributions in some rocks and associated minerals of the batholith of southern California. J Geophys Res 70:3485–3496CrossRefGoogle Scholar
  79. Van Achterbergh E, Ryan CG, Griffin WL (2001) GLITTER user’s manual: on-line interactive data reduction for the LA-ICP-MS microprobe. GEMOC Version 4:72Google Scholar
  80. Wang Y, Wang Y, Merino E (1995) Dynamic weathering model: constraints required by coupled dissolution and pseudomorphic replacement. Geochim Cosmochim Acta 59:1559–1570CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  • Alkis Kontonikas-Charos
    • 1
  • Cristiana L. Ciobanu
    • 2
  • Nigel J. Cook
    • 2
  • Kathy Ehrig
    • 3
  • Sasha Krneta
    • 1
  • Vadim S. Kamenetsky
    • 4
  1. 1.School of Physical SciencesThe University of AdelaideAdelaideAustralia
  2. 2.School of Chemical EngineeringThe University of AdelaideAdelaideAustralia
  3. 3.BHP Olympic DamAdelaideAustralia
  4. 4.School of Physical SciencesThe University of TasmaniaHobartAustralia

Personalised recommendations