Advertisement

Mineralogy and Petrology

, Volume 112, Issue 2, pp 245–256 | Cite as

Raman spectroscopic features of Al- Fe3+- poor magnesiochromite and Fe2+- Fe3+- rich ferrian chromite solid solutions

  • Sherif Kharbish
Original Paper

Abstract

Naturally occurring Al- Fe3 +- poor magnesiochromite and Fe2+- Fe3 +- rich ferrian chromite solid solutions have been analyzed by micro-Raman spectroscopy. The results reflect a strong positive correlation between the Fe3 + # [Fe3+/(Fe3 ++Cr + Al)] and the positions of all Raman bands. A positive correlation of the Raman band positions with Mg# [Mg/(Mg + Fe2 +)] is less stringent. Raman spectra of magnesiochromite and ferrian chromite show seven and six bands, respectively, in the spectral region of 800 − 100 cm− 1. The most intense band in both minerals is identified as symmetric stretching vibrational mode, ν 1(A 1g ). In the intermediate Raman-shift region (400–600 cm− 1), the significant bands are attributed to the ν 3(F 2g ) > ν 4(F 2g ) > ν 2(E g ) modes. The bands with the lowest Raman shifts (< 200 cm− 1) are assigned to F 2g (trans) translatory lattice modes. Extra bands in magnesiochromite (two bands) and in ferrian chromite (one weak band) are attributed to lowering in local symmetry and order/disorder effects.

Keywords

Raman spectroscopy Magnesiochromite Ferrian chromite Spinel Ferritchromite Order–disorder 

Notes

Acknowledgements

Thanks are due to Eugen Libowitzky and three anonymous reviewers for their valuable comments that helped to improve the manuscript, and to journal editor Lutz Nasdala for his kind help.

References

  1. Allen GC, Jutson JA, Tempest PA (1988) Characterization of nickel-chromium-iron spinel type oxides. J Nucl Mater 158:96–107.  https://doi.org/10.1016/0022-3115(88)90159-6 CrossRefGoogle Scholar
  2. Barnes SJ (2000) Chromite in komatiites II. Modification during green-schist to mid-amphibolite facies metamorphism. J Petrol 41:387–409.  https://doi.org/10.1093/petrology/41.3.387 CrossRefGoogle Scholar
  3. Beran A, Libowitzky E (2004) Spectroscopic methods in mineralogy. EMU notes om mineralogy 6.  https://doi.org/10.1180/EMU-notes.6
  4. Chopelas A, Hofmeister AM (1991) Vibrational spectroscopy of aluminate spinels at 1 atm and of MgAl2O4 to over 200 kbar. Phys Chem Miner 18:279–293.  https://doi.org/10.1007/BF00200186 CrossRefGoogle Scholar
  5. Cynn H, Sharma SK, Cooney TF, Nicol M (1992) High-temperature Raman investigation of order-disorder behavior in the MgAl2O4 spinel. Phys Rev B 45:500–502.  https://doi.org/10.1103/PhysRevB.45.500 CrossRefGoogle Scholar
  6. D’lppolito V, Andreozzi GB, Bersani D, Lottici PP (2015) Raman fingerprint of chromate, aluminate and ferrite spinels. J Raman Spectrosc 46:1255–1264.  https://doi.org/10.1002/jrs.4764 CrossRefGoogle Scholar
  7. DeAngelis BA, Keramidas VG, White WB (1971) Vibrational spectra of spinels with 1:1 ordering on tetrahedral sites. J Solid State Chem 3(3):358–363.  https://doi.org/10.1016/0022-4596(71)90071-5 CrossRefGoogle Scholar
  8. Droop GTR (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral Mag 51:431–435.  https://doi.org/10.1180/minmag.1987.051.361.10 CrossRefGoogle Scholar
  9. Dubessy J, Caumon MC, Rull F (2012) Raman spectroscopy applied to earth sciences and cultural heritage. EMU notes in mineralogy 12.  https://doi.org/10.1180/EMU-notes.12
  10. Errandonea D (2014) AB2O4 compounds at high pressures. In: Manjón FJ et al (eds) Pressure-induced phase transitions in AB2X4 chalcogenide compounds. Springer series in materials science 189. Springer-Verlag, Berlin Heidelberg, p 53–73.  https://doi.org/10.1007/978-3-642-40367-5_2
  11. Grimes NW, Collett AJ (1971) Correlation of infrared spectra with structural distortions in the spinel series Mg (CrxAl2–x)O4. Phys Status Solidi B 43:591 – 599.  https://doi.org/10.1002/pssb.2220430218 CrossRefGoogle Scholar
  12. Gupta HC, Sood G, Parashar A, Tripathi BB (1989) Long wavelength optical lattice vibrations in mixed chalcogenide spinels Zn1 – xCdxCr2S4 and CdCr2(S1 – xSex)4. J Phys Chem Solids 50(9):925–929.  https://doi.org/10.1016/0022-3697(89)90042-5 CrossRefGoogle Scholar
  13. Keramidas VG, DeAngelis BA, White WB (1975) Vibrational spectra of spinels with cation ordering on the octahedral sites. J Solid State Chem 15(3):233–245.  https://doi.org/10.1016/0022-4596(75)90208-X CrossRefGoogle Scholar
  14. Kharbish S (2010) Geochemistry and magmatic setting of Wadi El­Markh island arc gabbrodiorite suite, central Eastern Desert, Egypt. Chem Erde-Geochem 70:257–266.  https://doi.org/10.1016/j.chemer.2009.12.007 CrossRefGoogle Scholar
  15. Kharbish S (2012) Raman spectra of minerals containing interconnected As(Sb)O3 pyramids: trippkeite and schafarzikite. J Geosci-Czech 57:51–60.  https://doi.org/10.3190/jgeosci.111 Google Scholar
  16. Kharbish S (2013) Metamorphism and geochemical aspects on Neoproterozoic serpentinites hosted chrome spinel from Gabal Al-Degheimi, Eastern Desert, Egypt. Carpath J Earth Environ 8(4):125–138. http://www.ubm.ro/sites/CJEES/viewTopic.php?topicId=379
  17. Kharbish S (2016) Micro-Raman spectroscopic investigations of extremely scarce Pb-As sulfosalt minerals: baumhauerite, dufrénoysite, gratonite, sartorite and seligmannite. J Raman Spectrosc 47:1360–1366.  https://doi.org/10.1002/jrs.4973 CrossRefGoogle Scholar
  18. Kharbish S (2017) Spectral-structural characteristics of the extremely scarce silver arsenic sulfosalts, proustite, smithite, trechmannite and xanthoconite: μ-Raman spectroscopy evidence. Spectrochim Acta A 177:104–110.  https://doi.org/10.1016/j.saa.2017.01.038 CrossRefGoogle Scholar
  19. Kharbish S, Andráš P (2014) Investigations of the Fe sulfosalts berthierite, garavellite, arsenopyrite and gudmundite by Raman spectroscopy. Mineral Mag 78(5):1287–1299.  https://doi.org/10.1180/minmag.2014.078.5.13 CrossRefGoogle Scholar
  20. Kharbish S, Jeleň S (2016) Raman spectroscopy of the Pb-Sb sulfosalts minerals: boulangerite, jamesonite, robinsonite and zinkenite. Vib Spectrosc 85:157–166.  https://doi.org/10.1016/j.vibspec.2016.04.016 CrossRefGoogle Scholar
  21. Kharbish S, Andráš P, Luptáková J, Milovská S (2014) Raman spectra of oriented and non-oriented Cu hydroxy-phosphate minerals: libethenite, cornetite, pseudomalachite, reichenbachite and ludjibaite. Spectrochim Acta A 130:152–163.  https://doi.org/10.1016/j.saa.2014.01.144 CrossRefGoogle Scholar
  22. Laguna-Bercero MA, Sanjuán ML, Merino RI (2007) Raman spectroscopic study of cation disorder in poly- and single crystals of the nickel aluminate spinel. J Phys Condens Matter 19:1–10.  https://doi.org/10.1088/0953-8984/19/18/186217 CrossRefGoogle Scholar
  23. Lazzeri M, Thilbaudeau P (2006) Ab initio Raman spectrum of the normal and disordered MgAl2O4 spinel. Phys Rev B 74:140301-1–140301-4.  https://doi.org/10.1103/PhysRevB.74.140301 CrossRefGoogle Scholar
  24. Lenaz D, Lughi V (2013) Raman study of MgCr2O4–Fe2+Cr2O4 and MgCr2O4–MgFe2 3+O4 synthetic series: the effects of Fe2+ and Fe3+ on Raman shifts. Phys Chem Miner 40:491–498.  https://doi.org/10.1007/s00269-013-0586-4 CrossRefGoogle Scholar
  25. Lenaz D, Lughi V (2017) Raman spectroscopy and the inversion degree of natural Cr-bearing spinels. Am Mineral 102:327–332.  https://doi.org/10.2138/am-2017-5814 CrossRefGoogle Scholar
  26. Lenaz D, Princivalle F (2005) Crystal chemistry of detrital chromian spinel from the southeastern Alps and outer Dinarides: the discrimination of supplies from areas of similar tectonic setting? Can Mineral 43(4):1305–1314.  https://doi.org/10.2113/gscanmin.43.4.1305 CrossRefGoogle Scholar
  27. Lenaz D, Skogby H (2013) Structural changes in the FeAl2O4 -FeCr2O4 solid solution series and their consequences on natural Cr-bearing spinels. Phys Chem Miner 40:587–595.  https://doi.org/10.1007/s00269-013-0595-3 CrossRefGoogle Scholar
  28. Libowitzky E (1999) Correlation of O-H stretching frequencies and O-H...O hydrogen bond lengths in minerals. Monatsh Chem 130(8):1047–1059.  https://doi.org/10.1007/BF03354882 Google Scholar
  29. Malézieux JM (1985) Contribution a l’etude de spinelles de synthèse et de chromites naturelles par microsonde Raman laser. Dissertation, L’Universite des Sciences et Techniques de Lille. http://ori-nuxeo.univ-lille1.fr/nuxeo/site/esupversions/3a84faf8-9517-4559-a616-638678f6ab83
  30. Malézieux JM, Barbillat J, Cervelle B, Coutures JP, Couzi M, Piriou B (1983) Étude de spineless de synthèse de la série Mg(CrxAl2–x)O4 et de chromites naturelles par microsonde Raman-laser. Tschermaks Mineral Petrogr 32:171–185.  https://doi.org/10.1007/BF01081108 CrossRefGoogle Scholar
  31. Marinković Stanojević ZV, Romčević N, Stojanović B (2007) Spectroscopic study of spinel ZnCr2O4 obtained from mechanically activated ZnO–Cr2O3 mixtures. J Eur Ceram Soc 27:903–907.  https://doi.org/10.1016/j.jeurceramsoc.2006.04.057 CrossRefGoogle Scholar
  32. O’Neill HSTC, Dollase WA (1994) Crystal structures and cation distributions in simple spinels from powder XRD structural refinements: MgCr2O4, ZnCr2O4, Fe3O4 and the temperature dependence of the cation distribution in ZnAl2O4. Phys Chem Miner 20:541–555.  https://doi.org/10.1007/BF00211850 CrossRefGoogle Scholar
  33. O’Neill HSTC, Annersten H, Virgo D (1992) The temperature dependence of the cation distribution in magnesioferrite (MgFe2O4) from powder XRD structural refinements and Mössbauer spectroscopy. Am Mineral 77:725–740. http://www.minsocam.org/ammin/AM77/AM77_725.pdf
  34. Park BH, Kim DS (1992) Thermodynamic properties of NiCr2O4–NiFe2O4 spinel solid solution. Thermochim Acta 205(17):289–298.  https://doi.org/10.1016/0040-6031(92)85271-V CrossRefGoogle Scholar
  35. Preudhomme J, Tarte P (1971) Infrared studies of spinels III. The normal II-III spinels. Spectrochim Acta A 27:1817–1835.  https://doi.org/10.1016/0584-8539(71)80235-0 CrossRefGoogle Scholar
  36. Reddy BJ, Frost RL (2005) Spectroscopic characterization of chromite from the Moa-Baracoa ophiolitic massif, Cuba. Spectrochim Acta A 61:1721–1728.  https://doi.org/10.1016/j.saa.2004.07.002 CrossRefGoogle Scholar
  37. Redfern SAT, Harrison RJ, O’Neill HSTC, Wood DRR (1999) Thermodynamics and kinetics of cation ordering in MgAl2O4 spinel up to 1600 °C from in situ neutron diffraction. Am Mineral 84:299–310. http://www.AmMin/TOC/Articles_Free/1999/Redfern_p299-310_99.pdf
  38. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in hallides and chalcogenides. Acta Crystallogr A 32(5):751–767.  https://doi.org/10.1107/S0567739476001551 CrossRefGoogle Scholar
  39. Sickafus KE, Wills JM, Grimes NW (1999) Structure of spinel. J Am Ceram Soc 82(12):3279–3292.  https://doi.org/10.1111/j.1151-2916.1999.tb02241.x/abstract CrossRefGoogle Scholar
  40. Sinha MM (1999) Vibrational analysis of optical phonons in mixed chromite spinels. Nucl Instrum Methods B 153:183–185.  https://doi.org/10.1016/S0168-583X(98)00994-X CrossRefGoogle Scholar
  41. Smith E, Dent G (2005) Modern Raman spectroscopy—a practical approach. Wiley, England.  https://doi.org/10.1002/0470011831 Google Scholar
  42. Van Minh N, Yang IS (2004) A Raman study of cation-disorder transition temperature of natural MgAl2O4 spinel. Vib Spectrosc 35:93–96.  https://doi.org/10.1016/j.vibspec.2003.12.013 CrossRefGoogle Scholar
  43. Wang A, Jolliff BL, Haskin LA, 1999. Raman spectroscopic characterization of a Martian SNC meteorite: Zagami. J Geophys Res 104:8509 – 8519.  https://doi.org/10.1029/1999JE900004 CrossRefGoogle Scholar
  44. Wang A, Haskin LA, Kuebler KE, Jolliff BL, Walsh MM (2001) Raman spectroscopic detection of graphitic carbon of biogenic parentage in an ancient South African chert. Abstract No. 1423, Lunar Planetary Sci XXXII. http://www.lpi.usra.edu/meetings/lpsc2001/pdf/1423.pdf
  45. Wang Z, Lazor P, Saxena SK, O’Neill HSTC (2002a) High pressure Raman spectroscopy of ferrite MgFe2O4. Mater Res Bull 37:1589–1602.  https://doi.org/10.1016/S0025-5408(02)00819-X CrossRefGoogle Scholar
  46. Wang Z, O’Neill HSTC, Lazor P, Saxena SK (2002b) High pressure Raman spectroscopic study of spinel MgCr2O4. J Phys Chem Solids 63:2057–2061.  https://doi.org/10.1016/S0022-3697(02)00194-4 CrossRefGoogle Scholar
  47. Wang A, Kuebler KE, Jolliff BL, Haskin LA (2004) Raman spectroscopy of Fe-Ti-Cr-oxides, case study: Martian meteorite EETA79001. Am Mineral 89:665–680.  https://doi.org/10.2138/am-2004-5-601 CrossRefGoogle Scholar
  48. White SN (2009) Laser Raman spectroscopy as a technique for identification of seafloor hydrothermal and cold seep minerals. Chem Geol 3–4:240–252.  https://doi.org/10.1016/j.chemgeo.2008.11.008 CrossRefGoogle Scholar
  49. Yong W, Botis S, Shieh SR, Shi W, Withers AC (2012) Pressure-induced phase transition study of magnesiochromite (MgCr2O4) by Raman spectroscopy and X-ray diffraction. Phys Earth Planet In 196–197:75–82.  https://doi.org/10.1016/j.pepi.2012.02.011 CrossRefGoogle Scholar
  50. Zhang ZW, Gan FX (2011) Analysis of the chromite inclusions found in nephrite minerals obtained from different deposits using SEM-EDS and LRS. J Raman Spectrosc 42:1808–1811.  https://doi.org/10.1002/jrs.2963 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  1. 1.Geology Department, Faculty of Science, Suez GovernorateSuez UniversityEl Salam CityEgypt

Personalised recommendations