Mineralogy and Petrology

, Volume 112, Issue 2, pp 229–244 | Cite as

A comparison of amorphous calcium carbonate crystallization in aqueous solutions of MgCl2 and MgSO4: implications for paleo-ocean chemistry

  • Mei Han
  • Yanyang Zhao
  • Hui Zhao
  • Zuozhen Han
  • Huaxiao Yan
  • Bin Sun
  • Ruirui Meng
  • Dingxiang Zhuang
  • Dan Li
  • Binwei Liu
Original Paper


Based on the terminology of “aragonite seas” and “calcite seas”, whether different Mg sources could affect the mineralogy of carbonate sediments at the same Mg/Ca ratio was explored, which was expected to provide a qualitative assessment of the chemistry of the paleo-ocean. In this work, amorphous calcium carbonate (ACC) was prepared by direct precipitation in anhydrous ethanol and used as a precursor to study crystallization processes in MgSO4 and MgCl2 solutions having different concentrations at 60 °C (reaction times 240 and 2880 min). Based on the morphology of the aragonite crystals, as well as mineral saturation indices and kinetic analysis of geochemical processes, it was found that these crystals formed with a spherulitic texture in 4 steps. First, ACC crystallized into columnar Mg calcite by nearly oriented attachment. Second, the Mg calcite changed from columnar shapes into smooth dumbbell forms. Third, the Mg calcite transformed into rough dumbbell or cauliflower-shaped aragonite forms by local dissolution and precipitation. Finally, the aragonite transformed further into spherulitic radial and irregular aggregate forms. The increase in Ca2+ in the MgSO4 solutions compared with the MgCl2 solutions indicates the fast dissolution and slow precipitation of ACC in the former solutions. The phase transition was more complete in the 0.005 M MgCl2 solution, whereas Mg calcite crystallized from the 0.005 M MgSO4 solution, indicating that Mg calcite could be formed more easily in an MgSO4 solution. Based on these findings, aragonite and Mg calcite relative to ACC could be used to provide a qualitative assessment of the chemistry of the paleo-ocean. Therefore, calcite seas relative to high-Mg calcite could reflect a low concentration MgSO4 paleo-ocean, while aragonite seas could be related to an MgCl2 or high concentration of MgSO4 paleo-ocean.


Amorphous calcium carbonate Mg calcite Aragonite Mg sulfate Mg chloride Spherulitic growth 



We thank Abdel Monem Mohamed Soltan, an anonymous reviewer and handling editor Herbert Pöllmann, whose constructive comments helped to improve the manuscript. This work was supported by the National Natural Science Foundation of China (41372108, U1663201), Open Fund of the Key Laboratory of Marine Geology and Environment, Chinese Academy of Sciences (No. MGE2016KG10), the National Key Basic Research Development Program (973 Program) (2012 CB723104), the Specialized Research Fund for the Doctoral Program of Higher Education (20133718130001), and supported by SDUST Research Fund (2015TDJH101), the Scientific and Technological Innovation Project Financially Supported by Qingdao National Laboratory for Marine Science and Technology (No. 2016ASKJ13), Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals (DMSM201412), Shandong Province Natural Science Foundation (ZR2014DM005), the China Postdoctoral Science Foundation Funded Project (2013M540560, 2014T70659, 2016M600548, 2017T100502), Qingdao Postdoctoral Applied Research Project (2015199).


  1. Al Disi ZA, Jaoua S, Bontognali TRR, Attia ESM, Al-Kuwari HAAS, Zouari N (2017) Evidence of a role for aerobic bacteria in high magnesium carbonate formation in the evaporitic environment of Dohat Faishakh Sabkha in Qatar. Front Environ Sci 5:1CrossRefGoogle Scholar
  2. Al-Aasm IS, Veizer J (1986) Diagenetic stabilization of aragonite and low-Mg calcite, I. Trace elements in rudists. J Sediment Res 56:1CrossRefGoogle Scholar
  3. Andreassen JP, Flaten EM, Beck R, Lewis AE (2010) Investigations of spherulitic growth in industrial crystallization. Chem Eng Res Des 88:1163–1168CrossRefGoogle Scholar
  4. Arvidson RS, Mackenzie FT (1999) The dolomite problem: control of precipitation kinetics by temperature and saturation state. Am J Sci 299:257–288CrossRefGoogle Scholar
  5. Baker PA, Kastner M (1981) Constraints on the formation of sedimentary dolomite. Science 213:214–216CrossRefGoogle Scholar
  6. Barth-Wirsching U, Ehn R, Höllen H, Klamme D, Sitte W (1990) Studies on hydrothermal alteration by acid solutions dominated by SO4 2–: formation of the alteration products of the Gleichenberg latitic rock (Styria, Austria)-experimental evidence. Miner Petrol 41:81–103.CrossRefGoogle Scholar
  7. Beck R, Andreassen JP (2010) Spherulitic growth of calcium carbonate. Cryst Growth Des 10:2934–2947CrossRefGoogle Scholar
  8. Bots P, Benning LG, Rickaby REM, Shaw S (2011) The role of SO4 2– in the switch from calcite to aragonite seas. Geology 39:331–334CrossRefGoogle Scholar
  9. Bots P, Benning LG, Rodriguez-Blanco JD, Roncal-Herrero T, Shaw S (2012) Mechanistic insights into the crystallization of amorphous calcium carbonate (ACC). Cryst Growth Des 12:3806–3814CrossRefGoogle Scholar
  10. Brady PV, Krumhanst JL, Papength HW (1996) Surface complexation clues to dolomite growth. Geochim Cosmochim Acta 60:727–731CrossRefGoogle Scholar
  11. De Yoreo JJ, Gilbert PUPA, Sommerdijk NAJM, Penn RL, Whitelam S, Joester D, Zhang J, Navrotsky A, Banfield JF, Wallace AF, Michel FM, Meldrum FC, Cölfen H, Dove PM (2015) Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 349:aaa6760CrossRefGoogle Scholar
  12. Demény A, Németh P, Czuppon G, Leél-Őssy S, Szabó M, Judik K, Németh T, Stieber J (2016) Formation of amorphous calcium carbonate in caves and its implications for speleothem research. Sci Rep 6:39602CrossRefGoogle Scholar
  13. Eugster HP, Harvie CE, Weare JH (1980) Mineral equilibria in a six-component seawater system, Na-K-Mg-Ca-SO4-Cl-H2O, at 25 °C. Geochim Cosmochim Acta 44:1335–1347Google Scholar
  14. Falini G, Gazzano M, Ripamonti A (1994) Crystallization of calcium carbonate in presence of magnesium and polyelectrolytes. J Cryst Growth 137:577–584CrossRefGoogle Scholar
  15. Gal A, Habraken W, Gur D, Fratzl P, Weiner S, Addadi L (2012) Calcite crystal growth by a solid-state transformation of stabilized amorphous calcium carbonate nanospheres in a hydrogel. Angew Chem Int Ed 52:4867–4870CrossRefGoogle Scholar
  16. Goldsmith JR, Graf DL, Heard HC (1961) Lattice constants of the calcium-magnesium carbonates. Am Mineral 46:453–457Google Scholar
  17. Gong YUT, Killian CE, Olson IC, Appathurai NP, Amasino AL, Martin MC, Holt LJ, Wilt FH, Gilbert PUPA (2012) Phase transitions in biogenic amorphous calcium carbonate. Proc Natl Acad Sci USA 109:6088–6093CrossRefGoogle Scholar
  18. Gránásy L, Pusztai T, Tegze G, Warren JA, Douglas JF (2005) Growth and form of spherulites. Phys Rev Lett 72:011605Google Scholar
  19. Greer HF, Zhou W, Guo L (2015) Phase transition of Mg-calcite to aragonite in active-forming hot spring travertines. Miner Petrol 109:453–462CrossRefGoogle Scholar
  20. Guo W, Ma H, Li F, Jin Z, Li J, Ma F, Wang C (2013) Citrobacter sp. strain GW-M mediates the coexistence of carbonate minerals with various morphologies. Geomicrobiology J 30:749–757Google Scholar
  21. Han ZZ, Yan HX, Zhou SX, Zhao H, Zhang Y, Zhang NN, Yao CK, Zhang L, Han CY (2013) Precipitation of calcite induced by Synechocystis sp. PCC6803. World J Microbiol Biotechnol 29:1801–1811CrossRefGoogle Scholar
  22. Han ZZ, Yan HX, Zhao H, Zhou SX, Han M, Meng XQ, Zhang Y, Zhao YY, Sun B, Yao CK, Wang YF, Wang CL, Li FB, Tian CC, Xu LL (2014) Bio-precipitation of calcite with preferential orientation induced by Synechocystis sp. PCC6803. Geomicrobiol J 31:884–899CrossRefGoogle Scholar
  23. Han ZZ, Zhao YY, Yan HX, Zhao H, Han M, Sun B, Sun XY, Hou FF, Sun H, Han L, Sun YB, Wang J, Li H, Wang YQ, Du H (2015) Struvite precipitation induced by a novel sulfate-reducing bacterium Acinetobacter calcoaceticus SRB4 isolated from river sediment. Geomicrobiol J 32:868–877CrossRefGoogle Scholar
  24. Han ZZ, Meng RR, Yan HX, Zhao H, Han M, Zhao YY, Sun B, Sun YB, Wang J, Zhuang DX, Li WJ, Lu LX (2016a) Calcium carbonate precipitation by Synechocystis sp. PCC6803 at different Mg/Ca molar ratios under the laboratory condition. Carbonate Evaporite 1–15. doi: 10.1007/s13146-016-0322-5
  25. Han ZZ, Sun B, Zhao H, Yan HX, Han M, Zhao YY, Meng RR, Zhuang DX, Li D, Ma YT, Ma PY, Pan JT (2016b) Isolation of leclercia adcarboxglata strain JLS1 from the dolostone sample and characterization of its induced struvite minerals. Geomicrobiol J 34:500–510Google Scholar
  26. Han ZZ, Zhao YY, Yan HX, Zhao H, Han M, Sun B, Meng RR, Zhuang DX, Li D, Gao WJ, Du SY, Wang XA, Fan KX, Hu WY, Zhang MX (2017a) The characterization of intracellular and extracellular biomineralization induced by Synechocystis sp. PCC6803 cultured under low Mg/Ca ratios conditions. Geomicrobiol J 34:362–373CrossRefGoogle Scholar
  27. Han ZZ, Zhuang DX, Yan HX, Zhao H, Sun B, Li D, Sun YW, Hu WY, Xuan QZ, Chen JA, Xiu Y (2017b) Thermogravimetric and kinetic analysis of thermal decomposition characteristics of microbial calcites induced by cyanobacteria Synechocystis sp. PCC6803. J Therm Anal Calorim 127:1371–1379CrossRefGoogle Scholar
  28. Hardie LA (2003) Secular variations in Precambrian seawater chemistry and the timing of Precambrian aragonite seas and calcite seas. Geology 31:785–788Google Scholar
  29. Harvie CE, Eugster HP, Weare JH (1982) Mineral equilibria in the six-component seawater system, Na-K-Mg-Ca-SO4-Cl-H2O at 25 °C. II: compositions of the saturated solutions. Geochim Cosmochim Acta 46:1603–1618Google Scholar
  30. Hood AVS, Wallace MW (2012) Synsedimentary diagenesis in a cryogenian reef complex: ubiquitous marine dolomite precipitation. Sediment Geol 255:56–71CrossRefGoogle Scholar
  31. Hood AVS, Wallace MW, Drysdale RN (2011) Neoproterozoic aragonite-dolomite seas? Widespread marine dolomite precipitation in Cryogenian reef complexes. Geology 9:871–874CrossRefGoogle Scholar
  32. Houston PL (2012) Chemical kinetics and reaction dynamics. Courier Corporation, New YorkGoogle Scholar
  33. Huang SC, Naka K, Chujo Y (2007) A carbonate controlled-addition method for amorphous calcium carbonate spheres stabilized by poly (acrylic acid) s. Langmuir 23:12086–12095CrossRefGoogle Scholar
  34. Huang YC, Mou Y, Tsai TWT, Wu YJ, Lee HK, Huang SJ, Chan JC (2012) Calcium-43 NMR studies of polymorphic transition of calcite to aragonite. J Phys Chem B 116:14295–14301CrossRefGoogle Scholar
  35. Ihli J, Kim YY, Noel EH, Meldrum FC (2013) The effect of additives on amorphous calcium carbonate (acc): janus behavior in solution and the solid state. Adv Funct Mater 23:1575–1585CrossRefGoogle Scholar
  36. Ihli J, Wong WC, Noel EH, Kim AN, Kulak A, Christenson HK, Duer MJ, Meldrum FC (2014) Dehydration and crystallization of amorphous calcium carbonate in solution and in air. Nat Commun 5:3169CrossRefGoogle Scholar
  37. Inoue M, Hirasawa I (2013) The relationship between crystal morphology and XRD peak intensity on CaSO4·2H2O. J Cryst Growth 380:169–175CrossRefGoogle Scholar
  38. Jagniecki EA, Benison KC (2010) Criteria for the recognition of acid-precipitated halite. Sedimentology 57:273–292CrossRefGoogle Scholar
  39. Jones B, Peng X (2012) Amorphous calcium carbonate associated with biofilms in hot spring deposits. Sediment Geol 269:58–68CrossRefGoogle Scholar
  40. Joshi MS, Antony AV (1979) Nucleation in supersaturated potassium dihydrogen orthophosphate solutions. J Cryst Growth 46:7–9CrossRefGoogle Scholar
  41. Kastner M (1984) Control of dolomite formation. Nature 311:410–411CrossRefGoogle Scholar
  42. Long X, Ma Y, Qi L (2011) In vitro synthesis of high Mg calcite under ambient conditions and its implication for biomineralization process. Cryst Growth Des 11:2866–2873CrossRefGoogle Scholar
  43. Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press Inc, OxfordGoogle Scholar
  44. Lowenstein TK, Hardie LA, Timofeeff MN, Demicco RV (2003) Secular variation in seawater chemistry and the origin of calcium chloride basinal brines. Geology 31:857–860CrossRefGoogle Scholar
  45. Ma Y, Feng Q (2015) A crucial process: organic matrix and magnesium ion control of amorphous calcium carbonate crystallization on β-chitin film. Cryst Eng Comm 17:32–39CrossRefGoogle Scholar
  46. Manoli F, Dalas E (2000) Spontaneous precipitation of calcium carbonate in the presence of ethanol, isopropanol and diethylene glycol. J Cryst Growth 218:359–364CrossRefGoogle Scholar
  47. Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431–441CrossRefGoogle Scholar
  48. Meldrum FC (2003) Calcium carbonate in biomineralisation and biomimetic chemistry. Int Mater Rev 48:187–224CrossRefGoogle Scholar
  49. Nielsen AE (1964) Kinetics of precipitation. International Series of Monographs on Analytical Chemistry, OxfordGoogle Scholar
  50. Nielsen AE, Sohnel O (1971) Interfacial tensions electrolyte crystal-aqueous solution, from nucleation data. J Cryst Growth 11:233–242CrossRefGoogle Scholar
  51. Parkhurst DL (1995) User’s guide to PHREEQC-A computer program for speciation, reaction-path, advective-transport, and inverse geochemical calculations. U.S. Geological Survey Water-Resources Investigations Report 95-4227, 143 pGoogle Scholar
  52. Pascual-Cebrian E, Götz S, Bover-Arnal T, Skelton PW, Gili E, Salas R, Stinnesbeck W (2016) Calcite/aragonite ratio fluctuations in Aptian rudist bivalves: correlation with changing temperatures. Geology 44:135–138CrossRefGoogle Scholar
  53. Petrychenko Y, Peryt TM, Chechel EI (2005) Early cambrian seawater chemistry from fluid inclusions in halite from Siberian evaporites. Chem Geol 219:149–161CrossRefGoogle Scholar
  54. Politi Y, Arad T, Klein E, Weiner S, Addadi L (2004) Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science 306:1161–1164CrossRefGoogle Scholar
  55. Porter SM (2007) Seawater chemistry and early carbonate biomineralization. Science 316:1302–1302CrossRefGoogle Scholar
  56. Purgstaller B, Mavromatis V, Immenhauser A, Dietzel M (2016) Crystallization of Mg-bearing amorphous calcium carbonate to Mg-calcite–in situ monitoring. Geochim Cosmochim Acta 174:180–195CrossRefGoogle Scholar
  57. Quint P, Althoff J, Höhling HJ (1980) Enrichment of CO2 and magnesium in early stages of biomineralization. Experientia 36:151–152CrossRefGoogle Scholar
  58. Rahmani O, Tyrer M, Junin R (2014) Calcite precipitation from by-product red gypsum in aqueous carbonation process. RSC Adv 4:45548–45557CrossRefGoogle Scholar
  59. Ramezanianpour AA, Malhotra VM (1995) Effect of curing on the compressive strength, resistance to chloride-ion penetration and porosity of concretes incorporating slag, fly ash or silica fume. Cem Concr Compos 17:125–133CrossRefGoogle Scholar
  60. Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71CrossRefGoogle Scholar
  61. Rodriguez-Blanco JD, Shaw S, Benning LG (2011) The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite. Nanoscale 3:265–271CrossRefGoogle Scholar
  62. Rodriguez-Navarro C, Kudłacz K, Cizer Ö et al (2015) Formation of amorphous calcium carbonate and its transformation into mesostructured calcite. Cryst Eng Comm 17:58–72CrossRefGoogle Scholar
  63. Sánchez-Román M, McKenzie JA, Wagener ALR, Rivadeneyra MA, Vasconcelos C (2009) Presence of sulfate does not inhibit low-temperature dolomite precipitation. Earth Planet Sc Lett 285:131–139CrossRefGoogle Scholar
  64. Sánchez-Román M, McKenzie JA, Wagener ALR, Romanek CS, Sánchez-Navas A, Vasconcelos C (2011) Experimentally determined biomediated Sr partition coefficient for dolomite: significance and implication for natural dolomite. Geochim Cosmochim Acta 75:887–904CrossRefGoogle Scholar
  65. Sandberg PA (1983) An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature 305:19–22CrossRefGoogle Scholar
  66. Shtukenberg AG, Punin YO, Gunn E, Kahr B (2012) Spherulites. Chem Rev 112:1805–1838CrossRefGoogle Scholar
  67. Söhnel O, Mullin JW (1982) Precipitation of calcium carbonate. J Cryst Growth 60:239–250CrossRefGoogle Scholar
  68. Soltan AMM (2011) Petrographic modelling of Egyptian limestones for quicklime manufacture. Arab J Geosci 4:803–815CrossRefGoogle Scholar
  69. Soltan AMM, Kahl WA, Hazem MM, Wendschuh M, Fischer RX (2011) Thermal microstructural changes of grain-supported limestones. Miner Petrol 103:9–17CrossRefGoogle Scholar
  70. Stanley SM (2006) Influence of seawater chemistry on biomineralization throughout Phanerozoic time: paleontological and experimental evidence. Palaeogeogr Palaeocol 232:214–236CrossRefGoogle Scholar
  71. Stanley SM, Ries JB, Hardie LA (2002) Low-magnesium calcite produced by coralline algae in seawater of late Cretaceous composition. Proc Natl Acad Sci USA 99:15323–15326CrossRefGoogle Scholar
  72. Sun W, Jayaraman S, Chen W, Persson KA, Ceder G (2015) Nucleation of metastable aragonite CaCO3 in seawater. Proc Natl Acad Sci USA 112:3199–3204CrossRefGoogle Scholar
  73. Tobler DJ, Blanco JR, Dideriksen K, Sand KK, Bovet N, Benning LG, Stipp SLS (2014) The effect of aspartic acid and glycine on amorphous calcium carbonate (ACC) structure, stability and crystallization. Procedia Earth and Planetary Science 10:143–148Google Scholar
  74. Turner DR (2015) The role of solution chemistry in calcite dissolution. Aquat Geochem 21:407–413CrossRefGoogle Scholar
  75. Vasconcelos C, McKenzie JA (1997) Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil). J Sediment Res 67:378–390Google Scholar
  76. Wang YY, Yao QZ, Zhou GT, Fu SQ (2015) Transition of amorphous calcium carbonate into monohydrocalcite in aqueous solution: a biomimetic mineralization study. Eur J Mineral 27:717–729CrossRefGoogle Scholar
  77. Wang X, Chou IM, Hu W, Yuan S, Liu H, Wan Y, Wang X (2016) Kinetic inhibition of dolomite precipitation: insights from Raman spectroscopy of Mg2+-SO4 2– ion pairing in MgSO4/MgCl2/NaCl solutions at temperatures of 25 to 200 °C. Chem Geol 435:10–21Google Scholar
  78. Warthmann R, Van Lith Y, Vasconcelos C, McKenzie JA, Karpoff AM (2000) Bacterially induced dolomite precipitation in anoxic culture experiments. Geology 28:1091–1094CrossRefGoogle Scholar
  79. Weiss IM, Tuross N, Addadi L, Weiner S (2002) Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite. J Exp Zool 293:478–491CrossRefGoogle Scholar
  80. Yan HX, Han ZZ, Zhao H, Zhou SX, Chi NJ, Han M, Kou XY, Zhang Y, Xu LL, Tian CC, Qin S (2014) Characterization of calcium deposition induced by Synechocystis sp PCC6803 in BG11 culture medium. Chin J Oceanol Limnol 32:503–510CrossRefGoogle Scholar
  81. Yuan-Hui L, Gregory S (1974) Diffusion of ions in sea water and in deep-sea sediments. Geochim Cosmochim Acta 38:703–714CrossRefGoogle Scholar
  82. Yuan Q, Shi C, De Schutter G, Audenaert K, Deng D (2009) Chloride binding of cement-based materials subjected to external chloride environment-a review. Constr Build Mater 23:1–13Google Scholar
  83. Yue GH, Shang LM, Wang LP, Feng LL (2012) The influences of main ingredients of the reclaimed water on calcium carbonate scale in recycling cooling system. Adv Mater Res. Trans Tech Publications 393:1554–1557Google Scholar
  84. Zhang Y, Dawe RA (2000) Influence of Mg2+ on the kinetics of calcite precipitation and calcite crystal morphology. Chem Geol 163:129–138CrossRefGoogle Scholar
  85. Zhang Z, Xie Y, Xu X, Pan H, Tang R (2012) Transformation of amorphous calcium carbonate into aragonite. J Cryst Growth 343:62–67CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  • Mei Han
    • 1
    • 2
  • Yanyang Zhao
    • 1
  • Hui Zhao
    • 2
    • 3
  • Zuozhen Han
    • 1
  • Huaxiao Yan
    • 2
    • 3
  • Bin Sun
    • 1
  • Ruirui Meng
    • 1
  • Dingxiang Zhuang
    • 1
  • Dan Li
    • 1
  • Binwei Liu
    • 1
  1. 1.Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, College of Earth Science and EngineeringShandong University of Science and TechnologyQingdaoPeople’s Republic of China
  2. 2.Key Laboratory of Marine Geology and EnvironmentChinese Academy of SciencesQingdaoPeople’s Republic of China
  3. 3.Department of Bioengineering, College of Chemical and Environmental EngineeringShandong University of Science and TechnologyQingdaoPeople’s Republic of China

Personalised recommendations