Hermannjahnite, CuZn(SO4)2, a new mineral with chalcocyanite derivative structure from the Naboko scoria cone of the 2012–2013 fissure eruption at Tolbachik volcano, Kamchatka, Russia

Abstract

A new mineral hermannjahnite, ideally CuZn(SO4)2, was found in the sublimates of Saranchinaitovaya fumarole, Naboko scoria cone, where the recent Fissure Tolbachik Eruption occurred in 2012–2013. The cotype specimen was found in the Arsenatnaya fumarole, on the Second scoria cone of the Great Tolbachik Fissure Eruption (GTFE 1975–1976). The mineral is named in honour of Hermann Arthur Jahn. Jahn-Teller effect is pronounced in the structure of hermannjahnite. The empirical formula of the holotype hermannjahnite, calculated on the basis of 8 O apfu is: Cu1.00(Zn0.43Cu0.31Mg0.25)∑0.99S2.00O8. Hermannjahnite is optically biaxial (+), α = 1.642(2), β = 1.652(2), γ = 1.675(2) (589 nm) with 2 V (calc.) = 67.6°. Hermannjahnite is monoclinic, P21/n, a = 4.8076(2), b = 8.4785(3), c = 6.7648(3) Å, β = 93.041(3) °, V = 275.35(2) Å3, Z = 2, R 1 = 0.047. The eight strongest lines of the X-ray powder diffraction pattern are (I-d-hkl): 31–4.231-(020), 100–4.177-(110), 72–3.630-(11–1), 25–3.486-(111), 29–2.681-(11–2), 69–2.648-(02–2), 29–2.561-(112), 63–2.428-(130). The structure of hermannjahnite is isotypic to that of dravertite, CuMg(SO4)2, and represents a monoclinically distorted chalcocyanite CuSO4 structure. Crystallographic and structural data on a natural sample of chalcocyanite are provided. Zinc is very close in ionic radii to copper, but the Jahn-Teller effect on Cu2+ causes the segregation of these elements over two symmetrically independent crystallographic sites in hermannjahnite. Bond-length distortion parameters (∆oct) were evaluated for 44 different MO6 (M = Cu, Zn) octahedra in Cu, Zn oxysalt minerals containing Cu- or/and Zn-dominated octahedra. In hermannjahnite CuO6 octahedra exhibit a value of ∆oct × 103 = 14.71, whereas ∆oct × 103 = 0.83 is calculated for ZnO6. In chalcocyanite CuO6 octahedra have a value of ∆oct × 103 = 8.25. Relationships between calculated ∆oct parameters and occupancy of MO6 (M = Cu, Zn) octahedra by Cu2+ and Zn2+ cations in various minerals are evaluated and discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Adiwidjaja G, Friese K, Klaska KH, Schlueter J (1996) The crystal structure of christelite Zn3Cu2(SO4)2(OH)6·4(H2O). Z Kristallogr 211:518–521

    Google Scholar 

  2. Anthony JW, Bideaux RA, Bladh KW, Nichols MC (2003) Handbook of Mineralogy. V. Borates, carbonates, sulfates. Mineral data publishing, Tucson

  3. Braithwaite RSW, Pritchard RG, Paar WH, Pattrick RAD (2005) A new mineral, zincolibethenite, CuZnPO4OH, a stoichiometric species of specific site occupancy. Mineral Mag 69:145–153

    Article  Google Scholar 

  4. Brown ID, Altermatt D (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr B41:244–247

    Article  Google Scholar 

  5. Burns PC, Hawthorne FC (1995) Coordination geometry pathways in Cu2+ oxysalt minerals. Can Mineral 33:889–905

    Google Scholar 

  6. Burns PC, Hawthorne FC (1996) Static and dynamic Jahn-Teller effects in Cu2+ oxysalt minerals. Can Mineral 34:1089–1105

    Google Scholar 

  7. Burns PC, Pluth JJ, Smith JV, Eng P, Steele I, Housley RM (2000) Quetzalcoatlite: a new octahedral - tetrahedral structure from 2×2×40 μm3 crystal at the advanced photon source - GSE-CARS facility. Am Mineral 85:604–607

    Article  Google Scholar 

  8. Chaplygin IV, Lavrushin VY, Dubinina EO, Bychkova YV, Inguaggiato S, Yudovskaya MA (2016) Geochemistry of volcanic gas at the 2012-13 new Tolbachik eruption, Kamchatka. J Volcanol Geoth Res 323:186–193

    Article  Google Scholar 

  9. Chukanov NV, Pushcharovsky DY, Zubkova NV, Pekov IV, Pasero M, Merlino S, Moeckel S, Rabadanov MK, Belakovskiy DI (2007) Zincolivenite CuZn(AsO4)(OH): a new adamite-group mineral with ordered distribution of Cu and Zn. Doklady Earth Sci 415:841–845

  10. Danisi RM, Armbruster T, Lazic B, Vulic P, Kaindl R, Dimitrijevic R, Kahlenberg V (2013) In situ dehydration behavior of veszelyite (Cu,Zn)2Zn(PO4)(OH)3·2(H2O): A single-crystal X-ray study. Am Mineral 98:1261–1269

    Article  Google Scholar 

  11. Faraone D, Sabelli C, Zanazzi PF (1967) Su du solfati basici idrati: serpierite e devillite. Rend Acc Naz Lincei 43:369–382

    Google Scholar 

  12. Fedotov SA, Markhinin YK (eds) (1983) The Great Tolbachik fissure eruption. Cambridge University Press, New York

    Google Scholar 

  13. Filatov SK, Karpov GA, Shablinskii AP, Krivovichev SV, Vergasova LP, Antonov AV (2016) Ivsite, Na3H(SO4)2, a new mineral from volcanic exhalations of fumaroles of the fissure Tolbachik eruption of the 50th anniversary of the Institute of Volcanology and Seismology, far East Branch, Russian Academy of Sciences. Dokl Earth Sci 468:632–635

    Article  Google Scholar 

  14. Ghose S, Leo SR, Wan C (1974) Structural chemistry of copper and zinc minerals. Part I. Veszelyite, (Cu0.5Zn0.5)2ZnPO4NOH)3(H2O)3 : a novel type of sheet structure and crystal chemistry of copper-zinc substitution. Am Mineral 59:573–581

  15. Gorelova LA, Vergasova LP, Krivovichev SV, Avdontseva EY, Moskaleva SV, Karpov GA, Filatov SK (2016) Bubnovaite, K2Na8Ca(SO4)6, a new mineral species with modular structure from the Tolbachik volcano, Kamchatka peninsula, Russia. Eur J Mineral 28:677–686

    Article  Google Scholar 

  16. Harding MM, Kariuki BM, Cernik R, Cressey G (1994) The structure of aurichalcite, (Cu,Zn)5(OH)6(CO3)2, determined from a microcrystal. Acta Crystallogr B50:673–676

    Article  Google Scholar 

  17. Hoffmann C, Armbruster T, Giester G (1997) Acentric structure (P3) of bechererite, Zn7Cu(OH)13(SiO(OH)3SO4). Am Mineral 82:1014–1018

    Article  Google Scholar 

  18. Jahn HA, Teller E (1937) Stability of polyatomic molecules in degenerate electronic states. Proc R Soc Lon Ser-A 161:220–235

    Article  Google Scholar 

  19. Karpov GA, Krivovichev SV, Vergasova LP, Chernyat'eva AP, Anikin LP, Moskaleva SV, Filatov SK (2013) Oxysulfates of copper, sodium, and potassium in the lava flows of the 2012-2013 Tolbachik fissure eruption. J Volcanol Seismol 7:362–370

    Article  Google Scholar 

  20. Kovrugin VM, Siidra OI, Colmont M, Mentré O, Krivovichev SV (2015) Emulating exhalative chemistry: synthesis and structural characterization of ilinskite, Na[Cu5O2](SeO3)2Cl3, and its K-analogue. Miner Petrol 109:421–430

    Article  Google Scholar 

  21. Kovrugin VM, Colmont M, Siidra OI, Gurzhiy VV, Krivovichev SV, Mentré O (2017) Pathways for synthesis of new selenium-containing oxocompounds: chemical vapor transport reactions, hydrothermal techniques and evaporation method. J Cryst Growth 457:307–313

    Article  Google Scholar 

  22. Krause W, Bellendorff K, Bernhardt HJ, McCammon C, Effenberger H, Mikenda W (1998) Crystal chemistry of tsumcorite-group minerals. New data on ferrilotharmeyerite, tsumcorite, thometzekite, mounanaite, helmutwinklerite, and a redefinition of gartrellite. Eur J Mineral 10:179–206

    Article  Google Scholar 

  23. Malcherek T, Schlueter J (2013) The keyite crystal structure, revisited. Z Kristallogr 228:620–628

    Google Scholar 

  24. Mellini M, Merlino S (1978) Ktenasite, another mineral with (Cu,Zn)2(OH)3O)octahedral sheets. Z Kristallogr 147:129–140

  25. Nazarchuk EV, Siidra OI, Agakhanov AA, Lukina EA, Avdontseva EY, Vergasova LP, Filatov SK, Karpov GA (2015) Itelmenite, IMA2015-047. CNMNC newsletter no. 27. Mineral Mag 79:1229–1236

    Google Scholar 

  26. Olmi F, Sabelli C, Trosti-Ferroni R (1995) The crystal structure of sabelliite. Eur J Mineral 7:1331–1337

    Article  Google Scholar 

  27. Palache C, Berman H, Frondel C (1951) The system of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837–1892, 7th edn. Vol. II. John Wiley and Sons, Inc., New York

    Google Scholar 

  28. Peacor DR, Dunn PJ, Ramik RA, Sturman BD, Zeihen LG (1985) Philipsburgite, a new copper zinc arsenate hydrate related to kipushite, from Montana. Can Mineral 23:255–258

    Google Scholar 

  29. Pekov IV, Zubkova NV, Agakhanov AA, Yapaskurt VO, Chukanov NV, Belakovskiy DI, Sidorov EG, Pushcharovsky DY (2017) Dravertite, CuMg(SO4)2, a new mineral species from the Tolbachik volcano, Kamchatka, Russia. Eur J Mineral 29:323–330

    Article  Google Scholar 

  30. Perchiazzi N (2006) Crystal structure determination and Rietveld refinement of rosasite and mcguinessite. Z Kristallogr Suppl 23:505–510

    Article  Google Scholar 

  31. Piret P, Deliens M, Piret-Meunier J (1985) Occurrence and crystal structure of kipushite, a new copper-zinc phosphate from Kipushi, Zaire. Can Mineral 23:35–42

    Google Scholar 

  32. Sabelli C, Zanazzi PF (1968) The crystal structure of serpierite. Acta Crystallogr B 24:1214–1221

    Article  Google Scholar 

  33. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr C71:3–8

  34. Siidra OI, Lukina EA, Nazarchuk EV, Depmeier W, Bubnova RS, Agakhanov AA, Avdontseva EY, Filatov SK, Kovrugin VM (2017) Saranchinaite, Na2Cu(SO4)2, a new exhalative mineral from Tolbachik volcano, Kamchatka, Russia, and a product of the reversible dehydration of kröhnkite, Na2Cu(SO4)2(H2O)2. Mineral Mag. doi:10.1180/minmag.2017.081.037

  35. Toman K (1978) Ordering in olivenite-adamite solid solutions. Acta Crystallogr B 34:715–721

    Article  Google Scholar 

  36. Vergasova LP, Filatov SK (2016) A study of volcanogenic exhalation mineralization. J Volcanol Seismol 10:71–85

    Article  Google Scholar 

  37. Wildner M (1992) On the geometry of Co(II)O6 polyhedra in inorganic compounds. Z Kristallogr 202:51–70

    Article  Google Scholar 

  38. Wildner M, Giester G (1988) Crystal structure refinements of synthetic chalcocyanite (CuSO4) and zincosite (ZnSO4). Miner Petrol 39:201–209

    Article  Google Scholar 

  39. Williams PA, Leverett P, Birch WD, Hibbs DE, Kolitsch U, Mihajlovic T (2006) Zinc-rich zincolibethenite from Broken Hill, new South Wales. Aust J Mineral 12:3–7

    Google Scholar 

  40. Zelenski ME, Zubkova NV, Pekov IV, Boldyreva MM, Pushcharovsky DY, Nekrasov AN (2011) Pseudolyonsite, Cu3(VO4)2, a new mineral species from the Tolbachik volcano, Kamchatka peninsula, Russia. Eur J Mineral 23:475–481

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Christian L. Lengauer, an anonymous reviewer, editor-in-chief Lutz Nasdala and handling editor Nikita Chukanov for their valuable comments. Technical support by the St. Petersburg State University X-ray Diffraction and Geomodel Resource Centres is gratefully acknowledged. This work was financially supported by the Russian Science Foundation through grant 16-17-10085.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Oleg I. Siidra.

Additional information

Editorial handling: N. V. Chukanov

Electronic supplementary material

Table 1S

(DOCX 15 kb)

Table 2S

(DOCX 14 kb)

Table 3S

(DOCX 13 kb)

Table 4S

(DOCX 14 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Siidra, O.I., Nazarchuk, E.V., Agakhanov, A.A. et al. Hermannjahnite, CuZn(SO4)2, a new mineral with chalcocyanite derivative structure from the Naboko scoria cone of the 2012–2013 fissure eruption at Tolbachik volcano, Kamchatka, Russia. Miner Petrol 112, 123–134 (2018). https://doi.org/10.1007/s00710-017-0520-4

Download citation

Keywords

  • Hermannjahnite
  • Chalcocyanite
  • Copper
  • Zinc
  • Jahn-Teller effect
  • Distortion parameters
  • Sulphates
  • Fumarolic minerals
  • Dravertite
  • Tolbachik fissure eruption 2012–2013
  • Naboko scoria cone