Skip to main content
Log in

Chemical composition and evolution of tourmaline-supergroup minerals from the Sb hydrothermal veins in Rožňava area, Western Carpathians, Slovakia

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Tourmaline-supergroup minerals are common gangue minerals in Sb-hydrothermal veins on Betliar – Straková, Čučma – Gabriela and Rožňava – Peter-Pavol vein deposits in the Rožňava area, Slovakia. Tourmaline-supergroup minerals form relatively large prismatic to radial aggregates of parallel black to greyish-black crystals. Tourmaline-supergroup minerals from Betliar – Straková and Rožňava – Peter-Pavol are almost homogeneous with intermediate schorl-dravite composition. Čučma – Gabriela tourmaline have distinct zoning with massive core of the schorlitic-to-feruvitic shifting to schorlitic-to-dravitic composition, and dravitic to magnesio-foititic rim. The tourmaline composition is influenced by two main substitutions, namely Ca(Mg,Fe)Na−1Al−1 and X□AlNa−1(Mg,Fe)−1. Betliar – Straková and Rožňava – Peter-Pavol tourmaline-supergroup minerals exhibit only small extents of the X□AlNa−1(Mg,Fe)−1 substitution. This substitution shifts the composition to magnesio-foitite in Čučma – Gabriela tourmaline. The decrease of Al in the core of Čučma – Gabriela tourmaline crystals is caused by extensive Ca(Mg,Fe)Na−1Al−1 substitution. The unit-cell dimensions of all investigated tourmaline-supergroup minerals indicate an octahedral disorder with the Z(Fe3++Mg) proportion calculated from empirical equations varying between 0.85 and 0.87 apfu (atoms per formula unit). Based on Mössbauer spectra, the ZFe3+ content varied between 0.25 apfu in Betliar – Straková tourmaline and 0.45 apfu in Čučma – Gabriela sample. Based on Fe/(Fe + Mg) ratio, Betliar – Straková tourmaline is slightly enriched in Fe compared to Rožňava – Peter-Pavol, suggesting the impact of the host-rock composition; first are grown in Fe-richer acidic metarhyolitic rocks, latter in metapelites. In Čučma – Gabriela, the variations in Fe/(Fe + Mg) are very likely reflecting the change in fluid composition. Magnesio-foitite is the product of second-stage crystallization forming rims and crack fills. The relatively low Fe3+/Fe2+ ratio suggests only minor proportion of meteoric fluids forming tourmaline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Andreozzi GB, Bosi F, Longo M (2008) Linking Mossbauer and structural parameters in elbaite-schorl-dravite tourmalines. Am Mineral 93:658–666

    Article  Google Scholar 

  • Bačík P (2007) Tourmalinites of Western Carpathians: chemical composition and genetic aspects. Unpublished PhD Dissertation, Comenius University, Bratislava

    Google Scholar 

  • Bačík P (2015) Cation ordering in octahedral sites in tourmalines of schorl-dravite series. Can Mineral 53:571–590

    Google Scholar 

  • Bačík P, Uher P, Sýkora M, Lipka J (2008) Low-al tourmalines of the schorl–dravite – povondraite series in redeposited tourmalinites from the Western Carpathians, Slovakia. Can Mineral 46:1117–1129

    Article  Google Scholar 

  • Bačík P, Dianiška I, Števko M, Sečkár P (2011a) Brown acicular dravite from talc-magnesite deposit Gemerská Poloma (Gemeric Superunit, Slovakia). Bull Mineral-Petrol Odd Nár Muz (Praha) 19:164–170 (in Slovak)

    Google Scholar 

  • Bačík P, Ozdín D, Miglierini M, Kardošová P, Pentrák M, Haloda J (2011b) Crystallochemical effects of heat treatment on Fe-dominant tourmalines from Dolní Bory (Czech Republic) and Vlachovo (Slovakia). Phys Chem Miner 38:599–611

    Article  Google Scholar 

  • Bačík P, Uher P, Cempírek J, Vaculovič T (2012) Magnesian tourmalines from plagioclase-muscovite-scapolite metaevaporite layers in dolomite marble near Prosetín (Olešnice unit, Moravicum, Czech Republic). J Geosci 57:143–153

    Google Scholar 

  • Bačík P, Cempírek J, Uher P, Ozdín D, Filip J, Novák M, Škoda R, Breiter K, Klementová M, Ďuďa R, Groat LA (2013a) Oxy-schorl, Na(Fe2+ 2Al)Al6Si6O18(BO3)3(OH)3O, a new mineral from Zlatá Idka, Slovak Republic and Přibyslavice, Czech Republic. Am Mineral 98:485–492

    Article  Google Scholar 

  • Bačík P, Uher P, Ertl A, Méres Š, Ozdín D, Števko M, Koděra P, Sečkár P (2013b) New occurrences of magnesio-foitite in Western Carpathians - the relationship of the genetic environment and chemical composition. In: Geological evolution of the Western Carpathians: new ideas in the field of inter-regional correlations. Geological Institute, Slovak Academy of Sciences, Bratislava, pp 13–14

    Google Scholar 

  • Bačík P, Koděra P, Uher P, Ozdín D, Jánošík M (2015a) Chlorine-enriched tourmalines in hydrothermally altered diorite porphyry from the Detva, Biely Vrch porphyry gold deposit (Slovakia). Can Mineral 53:673–691

    Article  Google Scholar 

  • Bačík P, Ertl A, Števko M, Sečkár P, Giester G (2015b) Acicular magnesio-foitite to foitite in zoned tourmaline from quartz vein in Tisovec, Slovak ore Mts., Central Slovakia: the relationship of crystal chemistry and acicular to fibrous habitus. Can Mineral 53:221–234

    Article  Google Scholar 

  • Bačík P, Uher P, Dikej J, Puškelová Ľ (2017) Tourmalines from the siderite-quartz-sulphide hydrothermal veins, Gemeric unit, Western Carpathians, Slovakia: crystal chemistry and evolution. Mineral Petrol in press

  • Bajaník Š, Hanzel V, Ivanička J, Mello J, Pristaš J, Reichwalder P, Snopko L, Vozár J, Vozárová A (1983) Explanations to geological map of the Slovak Ore Mountains - eastern part. 1:50000. Geol. Inst. Of Dionýz Štúr press, Bratislava (in Slovak)

  • Baksheev IA, Prokof’ev VY, Yapaskurt VO, Vigasina MF, Zorina LD, Solov’ev VN (2011) Ferric-iron-rich tourmaline from the Darasun gold deposit, Transbaikalia, Russia. Can Mineral 49:263–276

    Article  Google Scholar 

  • Beňka J (1980) Niekoľko poznámok k mineralogickým a paragenetickým pomerom na Sb ložiskách Betliar-Čučma. In: Antimónové rudy Československa. ŠGÚDŠ, Bratislava, pp 127–132 (in Slovak)

    Google Scholar 

  • Beňka J, Caňo F (1992) Mineralógia, paragenéza a geochémia antimonitových žíl v oblasti Betliar-Čučma-Volovec. Západ Karpaty, Sér Mineral Petrogr Geochém Metalogen 15:61–91 (in Slovak)

    Google Scholar 

  • Berryman EJ, Wunder B, Ertl A, Koch-Müller M, Rhede D, Scheidl K, Giester G, Heinrich W (2016) Influence of the X-site composition on tourmaline’s crystal structure: investigation of synthetic K-dravite, dravite, oxy-uvite, and magnesio-foitite using SREF and Raman spectroscopy. Phys Chem Miner 43:83–102

    Article  Google Scholar 

  • Bosi F (2008) Disordering of Fe2+ over octahedrally coordinated sites of tourmaline. Am Mineral 93:1647–1653

    Article  Google Scholar 

  • Bosi F, Andreozzi GB (2013) A critical comment on Ertl et al. (2012): Limitations of Fe2+ and Mn2+ site occupancy in tourmaline: evidence from Fe2+- and Mn2+-rich tourmaline. Am Mineral 98:2183–2192

    Article  Google Scholar 

  • Bosi F, Lucchesi S (2004) Crystal chemistry of the schorl-dravite series. Eur J Mineral 16:335–344

    Article  Google Scholar 

  • Bosi F, Agrosì G, Lucchesi S, Melchiorre G, Scandale E (2005a) Mn-tourmaline from island of Elba (Italy): crystal chemistry. Am Mineral 90:1661–1668

    Article  Google Scholar 

  • Bosi F, Andreozzi GB, Federico M, Graziani G, Lucchesi S (2005b) Crystal chemistry of the elbaite-schorl series. Am Mineral 90:1784–1792

    Article  Google Scholar 

  • Breiter K, Broska I, Uher P (2015) Intensive low-temperature tectono-hydrothermal overprint of peraluminous rare-metal granite: a case study from the Dlhá dolina valley (Gemericum, Slovakia). Geol Carpath 66:19–36

    Article  Google Scholar 

  • Broska I, Uher P, Lipka J (1998) Brown and blue schorl from the Spiš-Gemer granite, Slovakia: composition and genetic relations. J Czech Geol Soc 43:9–16

    Google Scholar 

  • Broska I, Uher P, Siman P (1999) Sodium deficient schorl and foitite in the Spiš-Gemer granites. Miner Slov 31:507–512 (in Slovak with English summary)

    Google Scholar 

  • Cámara F, Ottolini L, Hawthorne FC (2002) Chemistry of three tourmalines by SREF, EMPA, and SIMS. Am Mineral 87:1437–1442

    Article  Google Scholar 

  • Cambel B, Jarkovský J (1985) The Rudňany ore field – geochemical-metallogenetic characteristics. Veda, Bratislava (in Slovak with English summary)

    Google Scholar 

  • Cavaretta G, Puxeddu M (1990) Schorl-Dravite-Ferridravite tourmalines deposited by hydrothermal magmatic fluids during Early evolution of Larderello geothermal field, Italy. Econ Geol 85:1236–1251

    Article  Google Scholar 

  • Clarke DB, Reardon NC, Chatterjee AK, Gregoire DC (1989) Tourmaline composition as a guide to mineral exploration; a reconnaissance study from Nova Scotia using discriminant function analysis. Econ Geol 84:1921–1935

    Article  Google Scholar 

  • Deksissa DJ, Koeberl C (2002) Geochemistry and petrography of gold-quartz-tourmaline veins of the Okote area, southern Ethiopia: implications for gold exploration. Mineral Petrol 75:101–122

    Article  Google Scholar 

  • Dyar MD, Taylor ME, Lutz TM, Francis CA, Guidotti CV, Wise M (1998) Inclusive chemical characterisation of tourmaline: Mössbauer study of Fe valence and site occupancy. Am Mineral 83:848–864

    Article  Google Scholar 

  • Ertl A, Kolitsch U, Prowatke S, Dyar MD, Henry DJ (2006) The F-analogue of schorl from Grasstein, Trentino—South Tyrol, Italy: crystal structure and chemistry. Eur J Mineral 18:583–588

    Article  Google Scholar 

  • Ertl A, Kolitsch U, Dyar MD, Hughes JM, Rossman GR, Pieczka A, Henry DJ, Pezzotta F, Prowatke S, Lengauer CL, Körner W, Brandstätter F, Francis CA, Prem M, Tillmanns E (2012) Limitations of Fe2+ and Mn2+ site occupancy in tourmaline: evidence from Fe2+- and Mn2+-rich tourmaline. Am Mineral 97:1402–1416

    Article  Google Scholar 

  • Fareeduddin KIR, Gupta S (2010) Low-al tourmalines of ‘oxy-dravite’- povondraite series from cu-au deposit of Ghagri area, Salumber-Ghatol belt, Aravalli Supergroup, Rajasthan. Curr Sci 99:933–938

    Google Scholar 

  • Faryad SW (1997) Metamorphic petrology of the Early Paleozoic low-grade rocks in the Gemericum. In: Grecula P, Hovorka D, Putiš M (eds) Geological evolution of the Western Carpathians. Miner Slov – Monograph, Bratislava, pp 309–314

    Google Scholar 

  • Filip J, Bosi F, Novák M, Skogby H, Tuček J, Čuda J, Wildner M (2012) Iron redox reactions in the tourmaline structure: high-temperature treatment of Fe3+-rich schorl. Geochim Cosmochim Acta 86:239–256

    Article  Google Scholar 

  • Frietsch R, Tuisku P, Martinsson O, Perdahl J-A (1997) Early Proterozoic cu-(au) and ore deposits associated with regional Na-cl metasomatism in northern Fennoscandia. Ore Geol Rev 12:1–34

    Article  Google Scholar 

  • Gatta GD, Bosi F, McIntyre GJ, Skogby H (2014) First accurate location of two proton sites in tourmaline: a single-crystal neutron diffraction study of oxy-dravite. Mineral Mag 78:681–692

    Article  Google Scholar 

  • Gonzalez-Carreño T, Fernández M, Sanz J (1988) Infrared and electron microprobe analysis of tourmalines. Phys Chem Miner 15:452–460

    Article  Google Scholar 

  • Grecula P (1982) Gemericum - segment of palaeotethynian riftogeneous basin. Miner Slov, Monograph, Alfa

    Google Scholar 

  • Grecula P, Abonyi A, Abonyiová M, Antaš J, Bartalský B, Bartalský J, Dianiška I, Drnzík E, Ďuďa R, Gargulák M, Gazdačko Ľ, Hudáček J, Kobulský J, Lörincz L, Macko J, Návesňák D, Németh Z, Novotný L, Radvanec M, Rojkovič I, Rozložník L, Rozložník O, Varček C, Zlocha J (1995) Mineral deposits of the Slovak Ore Mountains, vol 1. Mineralia Slovaca Corporation, Bratislava

    Google Scholar 

  • Hawthorne FC, Selway JB, Kato A, Matsubara S, Shimizu M, Grice JD, Vajdak J (1999) Magnesiofoitite, □(Mg2Al)Al6(Si6O18)(BO3)3(OH)4, a new alkali-deficient tourmaline. Can Mineral 37:1439–1443

    Google Scholar 

  • Henry DJ, Dutrow BL (1990) Ca substitution in li-poor aluminous tourmaline. Can Mineral 28:111–124

    Google Scholar 

  • Henry DJ, Dutrow BL (1996) Metamorphic tourmaline and its petrologic applications. Rev Mineral 33:503–557

    Google Scholar 

  • Henry DJ, Guidotti CV (1985) Tourmaline as a petrogenetic indicator mineral: an example from the staurolite-grade metapelites of NW Maine. Am Mineral 70:1–15

    Google Scholar 

  • Henry DJ, Kirkland BL, Kirkland DW (1999) Sector zoned tourmaline from the cap rock of a salt dome. Eur J Mineral 11:263–280

    Article  Google Scholar 

  • Henry DJ, Sun H, Slack J, Dutrow BL (2008) Tourmaline in meta-evaporites and highly magnesian rocks: perspectives from Namibian tourmalinites. Eur J Mineral 20:889–904

    Article  Google Scholar 

  • Henry D, Novák M, Hawthorne FC, Ertl A, Dutrow BL, Uher P, Pezzotta F (2011) Nomenclature of the tourmaline-supergroup minerals. Am Mineral 96:895–913

    Article  Google Scholar 

  • Hovorka D, Spišiak J (1997) Medium-grade metamorphics of the Gemeric unit (central Western Carpathians). In: Grecula P, Hovorka D, Putiš M (eds) Geological evolution of the Western Carpathians. Miner Slov, Monograph, Bratislava, pp 315–332

    Google Scholar 

  • Jiang S-Y, Palmer MR, Slack JF, Shaw DR (1998) Paragenesis and chemistry of multistage tourmaline formation in the Sullivan Pb-Zn-Ag deposit, British Columbia. Econ Geol 93:47–67

    Article  Google Scholar 

  • Klimko T, Chovan M, Huraiová M (2009) Hydrothermal mineralization of stibnite veins in the Spiš-Gemer ore Mts. Miner Slov 41:115–132 (in Slovak)

    Google Scholar 

  • Krist E, Korikovskij SP, Putiš M, Janák M, Faryad SW (1992) Geology and petrology of metamorphic rocks of the Western Carpathian crystalline complexes. Comenius Univ Press, Bratislava

    Google Scholar 

  • Kubiš M, Broska I (2010) The granite system near Betliar village (Gemeric Superunit, Western Carpathians): evolution of a composite silicic reservoir. J Geosci 55:131–148

    Google Scholar 

  • Lexa O, Schulmann K, Ježek J (2003) Cretaceous collision and indentation in the West Carpathians: view based on structural analysis and numerical modeling. Tectonics 22(6):1066. doi:10.1029/2002TC001472

    Article  Google Scholar 

  • Marsina K (1999) Geochemical atlas of the Slovak Republic. Rocks. Ministry of the Environment of the Slovak Republic, Bratislava, Part III

    Google Scholar 

  • Medaris LG Jr, Fournelle JH, Henry DJ (2003) Tourmaline-bearing quartz veins in the Baraboo quartzite: occurrence and significance of foitite and "oxy-foitite". Can Mineral 41:749–758

    Article  Google Scholar 

  • Mlynarczik MSJ, Williams-Jones AE (2006) Zoned tourmaline associated with cassiterite: implications for fluid evolution and tin mineralization in the San Rafael Sn-cu deposit, southeastern Peru. Can Mineral 44:347–365

    Article  Google Scholar 

  • Palmer MR, Slack JF (1989) Boron isotopic composition of tourmaline from massive sulfide deposits and tourmalinites. Contrib Mineral Petrol 103:434–451

    Article  Google Scholar 

  • Peng Q-M, Palmer MR (2002) The Paleoproterozoic mg and mg-Fe borate deposits of Liaoning and Jilin provinces, Northeast China. Econ Geol 97:93–108

    Article  Google Scholar 

  • Petrík I, Kohút M, Broska I (Eds) (2001) Granitic plutonism of the Western Carpathians: characteristics & evolution. Guide book to Eurogranites 2001. Veda

  • Pieczka A, Kraczka J, Zabinski W (1998) Mössbauer spectra of Fe3+ poor schorls: reinterpretation of the spectra on the basis of the ordered structure model. J Czech Geol Soc 43:69–74

    Google Scholar 

  • Pirajno F, Smithies RH (1992) The FeO/(FeO+MgO) ratio of tourmaline: a useful indicator of spatial variations in granite-related hydrothermal mineral deposits. J Geochem Explor 42:371–381

    Article  Google Scholar 

  • Rosenberg PE, Foit FF Jr (2006) Magnesiofoitite from the uranium deposits of the Athabasca Basin, Saskatchewan, Canada. Can Mineral 44:959–965

    Article  Google Scholar 

  • Sassi FP, Vozárová A (1987) The pressure–temperature character of the Hercynian metamorphism in the Gemericum (West Carpathians, Czechoslovakia). Rend Soc Ital Mineral Petrol 42:73–81

    Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A32:751–767

    Article  Google Scholar 

  • Slack JF (1996) Tourmaline associations with hydrothermal ore deposits. Rev Mineral 33:559–643

    Google Scholar 

  • Trumbull RB, Chaussidon M (1999) Chemical and boron isotopic composition of magmatic and hydrothermal tourmalines from the Sinceni granite-pegmatite system in Swaziland. Chem Geol 153:125–137

    Article  Google Scholar 

  • Uher P, Broska I (1996) Post-orogenic Permian granitic rocks in the Western Carpathian-Pannonian area: geochemistry, mineralogy and evolution. Geol Carpath 47:311–321

    Google Scholar 

  • Uher P, Bačík P, Ozdín D (2009) Tourmaline (magnesiofoitite and dravite) in quartz vein near Limbach, Malé Karpaty Mts. (Slovakia). Miner Slov 41:445–456 (in Slovak)

    Google Scholar 

  • Varček C (1954) Preliminary report on research of metallogenetic conditions of Rožňava area. Geol. Práce, Zprávy 1:71–74 (in Slovak)

    Google Scholar 

  • Von Goerne G, Franz G, Robert JL (1999) Upper thermal stability of tourmaline + quartz in the system MgO–Al2O3–SiO2–B2O3–H2O and Na2O–MgO–Al2O3–SiO2–B2O3–H2O–HCl in hydrothermal solutions and siliceous melts. Can Mineral 37:1025–1039

    Google Scholar 

  • Vozárová A, Vozár J (1988) Late Paleozoic in West Carpathians. Geol. Inst. of Dionýz Štúr Press, Bratislava

    Google Scholar 

  • Vozárová A, Rodionov N, Šarinová K, Presnyakov S (2016) New zircon ages on the Cambrian–Ordovician volcanism of the southern Gemericum basement (Western Carpathians, Slovakia): SHRIMP dating, geochemistry and provenance. Int J Earth Sci (Geol Rundsch), doi:10.1007/s00531-016-1420-2

  • Xavier RP, Wiedenbeck M, Trumbull RB, Dreher AM, Monteiro LVS, Rhede D, de Araújo CEG, Torresi I (2008) Tourmaline B-isotopes fingerprint marine evaporites as the source of high-salinity ore fluids in iron oxide copper-gold deposits, Carajás Mineral Province (Brazil). Geology 36:743–746

    Article  Google Scholar 

  • Yu J-M, Jiang S-Y (2003) Chemical composition of tourmaline from the Yunlong tin deposit, Yunnan, China: implications for ore genesis and mineral exploration. Mineral Petrol 77:67–84

    Article  Google Scholar 

  • Žáček V, Frýda J, Petrov A, Hyršl J (2000) Tourmalines of the povondraite - (oxy)dravite series from the cap rock of meta-evaporite in alto Chapare, Cochabamba, Bolivia. J Czech Geol Soc 45:3–12

    Google Scholar 

  • Zhao C, Liao L, Xia Z, Sun X (2012) Temperature-dependent Raman and infrared spectroscopy study on iron-magnesium tourmalines with different Fe content. Vib Spectrosc 62:28–34

    Article  Google Scholar 

Download references

Acknowledgements

We thank two anonymous experts for their detailed reviews that helped us to improve the quality of the manuscript. This present research was supported by the Slovak Research and Development Agency under contract No. APVV-0375-12 and the Ministry of Education of Slovak Republic grant agency under the contracts VEGA-1/0079/15 and VEGA-1/0499/16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Bačík.

Additional information

Editorial handling: L. Nasdala

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bačík, P., Dikej, J., Fridrichová, J. et al. Chemical composition and evolution of tourmaline-supergroup minerals from the Sb hydrothermal veins in Rožňava area, Western Carpathians, Slovakia. Miner Petrol 111, 609–624 (2017). https://doi.org/10.1007/s00710-017-0507-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-017-0507-1

Keywords

Navigation