Skip to main content
Log in

Geochemistry and mineral chemistry of pyroxenite xenoliths and host volcanic alkaline rocks from north west of Marand (NW Iran)

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The Plio-Quaternary alkaline volcanic rocks from the northwest of Marand (NW Iran) consist of trachy-andesites, trachy-basaltic andesites, leucite-tephrites and tephrites. They display a distinct LILE and LREE enrichment, a HFSE depletion (Ta, Ti, and Nb) and high Ba/Ta and Ba/Nb ratios, which are among the characteristics of subduction-derived magmatic rocks. The investigated clinopyroxenite xenoliths mostly occur within the trachy-andesites and more rarely within the trachy-basaltic andesite rocks. These xenoliths, which have a cumulate texture, are classified into four groups based on their mineralogical and chemical features. Group 1 contains clinopyroxene and amphibole as the main minerals. This group does not indicate a clear enrichment in incompatible trace elements in contrast with the Groups 2 and 4, where Ba, Th and U are enriched. Major element contents of clinopyroxenes and amphiboles of Group 1 xenoliths are similar to those of their counterparts of intermediate volcanic rocks. In addition, their contents of compatible elements such as Cr and Ni (whole rock) are also the same, implying a similar magmatic origin. Group 2 contains clinopyroxene and phlogopite as the main minerals. This group, similarly to potassic and ultrapotassic volcanic rocks, is enriched in LREE compared to HREE and unlike the intermediate volcanic rocks, does not contain amphibole. Their 143Nd/144Nd and 86Sr/87Sr ratios are also different. Given the Cr and Ni contents, the REE pattern shape and the chemical composition of clinopyroxene and phlogopite, it seems that the parental melt of this group is similar to the one of potassic and ultrapotassic volcanic rocks. Group 3 contains clinopyroxene and biotite as the main minerals. The REE pattern of this group, unlike those of Groups 1, 2 and 4, has a relatively flat slope. In addition, the content of compatible elements, such as Cr and Ni, also differ as well as the chemical composition of clinopyroxene and mica, which are also different from those of volcanic rocks. Group 4 clinopyroxenites contain clinopyroxene, phlogopite and amphibole as the main minerals. The LREE-enriched patterns and the Ba, U and Pb enrichment of this group are similar to those of the Group 2. The samples of this group on the other hand differ from those of the Group 2 clinopyroxenites in terms of crystal size, crystallization depth, Cr and Ni contents, and chemical composition of clinopyroxene. The parental melt of this group is similar to that of the intermediate volcanic rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ackerman L, Spacek P, Medaris G, Hegner E, Svojtka M, Ulrych J (2012) Geochemistry and petrology of pyroxenite xenoliths from Cenozoic alkaline basalts, bohemian massif. J Geosci 57:199–219

    Google Scholar 

  • Ahankoub M, Jahangiri A, Asahara Y, Moayyed M (2013) Petrochemical and Sr-Nd isotope investigations of A-type granites in the east of Misho, NW Iran. Arab J Geosci 6:4833–4849

    Article  Google Scholar 

  • Ahmadzadeh G, Jahangiri A, Lentz D, Mojtahedi M (2010) Petrogenesis of Plio-quaternary post-collisional ultrapotassic volcanism in NW of Marand, NW Iran. J Asian Earth Sci 39:37–50

    Article  Google Scholar 

  • Alavi M (1994) Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics 220:211–238

    Article  Google Scholar 

  • Alavi M (2004) Regional stratigraphy of the Zagros folded-thrust belt of Iran and its proforeland evolution. Amer J Sci 304:1–20

    Article  Google Scholar 

  • Arima M, Edgar AD (1981) Substitution mechanisms and solubility of titanium in phlogopites from rocks of probable mantle origin. Contrib Mineral Petrol 77:288–295

    Article  Google Scholar 

  • Baker JA, Menzies MA, Thirlwall MF, Macpherson CG (1997) Petrogenesis of quaternary intraplate volcanism, Sana'a, Yemen: implications for plume–lithosphere interaction and polybaric melt hybridization. Petrology 38:1359–1390

    Article  Google Scholar 

  • Barrat JA, Yamaguchi A, Greenwood RC, Bohn M, Cotten J, Benoit M, Franchi IA (2007) The Stannern trend eucrites: contamination of main group eucritic magmas by crustal partial melts. Geochim Cosmochim Acta 71:4108–4124

    Article  Google Scholar 

  • Barth MG, McDonough WF, Rudnick RL (2000) Tracking the budget of Nb and Ta in the continental crust. Chem Geol 165:197–213

    Article  Google Scholar 

  • Bazargani A (2014) Petrography and petrology of subvocanic rocks in Tabakh Daghi dome of South West Marand, NW Iran. Dissertation, University of Tabriz (in Persian)

  • Berberian M, King GCP (1981) Towards a palegeography and tectonic evolution of Iran. Can J Earth Sci 18:210–265

    Article  Google Scholar 

  • Best MG, Christiansen EH (2001) Igneous petrology. Blackwell, London

    Google Scholar 

  • Bondi M, Morten L, Nimis P, Rossi PL, Tranne CA (2002) Megacrysts and mafic–ultramafic xenolith-bearing ignimbrites from Sirwa volcano, Morocco: phase petrology and thermobarometry. Mineral Petrol 75:203–221

    Article  Google Scholar 

  • Boudier F, Ceuleneer G, Nicolas A (1988) Shear zones, thrusts and related magmatism in the Oman ophiolite: initiation of thrusting on an oceanic ridge. Tectonophysics 151:275–296

    Article  Google Scholar 

  • Boynton WV (1984) Geochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 63–114

    Chapter  Google Scholar 

  • Coleman RG (1971) Plate tectonic emplacement of upper mantle peridotites along continental edges. J Geophys Res 76:1212–1222

    Article  Google Scholar 

  • Cotten J, Le Dez A, Bau M, Maury R, Dulsky P, Fourcade S, Bohn M, Brousse R (1995) Origin and anomalous rare-earth element and yttrium enrichments in subaerially exposed basalts: evidence from French Polynesia. Chem Geol 119:115–138

    Article  Google Scholar 

  • Dehghan GA, Makris T (1984) The gravity field and crustal structure of Iran. Neues Jb Geol Paläontol Abh 168:215–229

    Google Scholar 

  • Downes H (1993) The nature of the lower continental crust of Europe; petrological and geochemical evidence from xenoliths. Phys Earth Planet Inter 79:195–218

    Article  Google Scholar 

  • Egorova VV, Volkova NI, Shelepaev RA, Izokh AE (2006) The lithosphere beneath Sangilen plateau, Siberia: evidence from peridotite, pyroxenite and gabbro xenoliths from alkaline basalts. Mineral Petrol 88:419–441

    Article  Google Scholar 

  • Emami H (1981) Geologie de la region de Qom-Aran (Iran) contribution a l’etude denamique et geochemique du volcanisme Teriaire del’ Iran centaral. Dissertation, University of Grenoble

  • Farhoudi G (1978) A comparison of Zagros geology to island arcs. Geology 86:323–334

    Article  Google Scholar 

  • Fitton JG, James D, Leeman WP (1991) Basic magmatism associated with late Cenozoic extension in the western United States: compositional variations in space and time. J Geophys Res 96(B8):13693–13711

    Article  Google Scholar 

  • Gertisser R, Keller J (2000) From basalt to dacite: origin and evolution of the calc alkaline series of Salina, Aeolian arc, Italy. Contrib Mineral Petrol 139:607–626

    Article  Google Scholar 

  • Ghasemi A, Talbot CJ (2006) A new tectonic scenario for the Sanandaj-Sirjan zone (Iran). J Asian Earth Sci 26:683–693

    Article  Google Scholar 

  • Gill JB (1981) Orogenic andesites and plate tectonics. Springer, Berlin

    Book  Google Scholar 

  • Gonzaga RG, Lowry D, Jacob DE, LeRoex A, Schulze D, Menzies MA (2010) Eclogites and garnet pyroxenites: similarities and differences. J Volcanol Geotherm Res 190:235–247

    Article  Google Scholar 

  • Green NL (2006) Influence of slab thermal structure on basalt source regions and melting conditions: REE and HFSE constraints from the garibaldi volcanic belt, northern Cascadia subduction system. Lithos 87:23–49

    Article  Google Scholar 

  • Griffin WL, O'Reilly SY, Ryan CG (1999) The composition and origin of sub-continental lithospheric mantle. In: Fei Y, Berth CM, Mysen BO, (eds), Mantle petrology: field observations and high-pressure experimentation; A Tribute to Francis R. (Joe) Boyd. Geochem Soc Spec Publ 6:13–45

  • Hart SR, Gerlach DC, White WM (1986) A possible new Sr-Nd-Pb mantle array and consequences for mantle mixing. Geochim Cosmochim Acta 50:1551–1557

    Article  Google Scholar 

  • Henry DJ (1981) Sulfide-silicate relations of the staurolite grade pelitic schists, Rangeley quadrangle, Maine. Dissertation, University of Wisconsin-Madison

  • Hess PC (1989) Origin of igneous rocks. Harvard, London

    Google Scholar 

  • Himmelberg GR, Loney RA (1995) Characteristics and petrogenesis of Alaskan-type ultramafic-mafic intrusions, Southeastern Alaska, U.S. Geol Surv Prof Paper, pp 1–47

  • Ho KS, Chen JC, Smith AD, Juang WS (2000) Petrogenesis of two groups of pyroxenite from Tungchihsu Penghu Islands Taiwan Strait: implications for mantle metasomatism beneath SE China. Chem Geol 167:355–372

    Article  Google Scholar 

  • Hofmann A, Jochum K, Seufert M, White M (1986) Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth Planet Sci Lett 33:33–45

    Article  Google Scholar 

  • Jahangiri A (2007) Post-collisional Miocene adakitic volcanism in NW Iran: geochemical and geodynamic implications. J Asian Earth Sci 30:433–447

    Article  Google Scholar 

  • Kelemen PB, Dick HJB, Quick JE (1992) Formation of harzburgite by pervasive melt/rock reaction in the upper mantle. Nature 358:635–641

    Article  Google Scholar 

  • Kheirkhah M, Allen MB, Emami M (2009) Quaternary syn-collision magmatism from the Iran/Turkey borderlands. J Volcanol Geotherm Res 182:1–12

    Article  Google Scholar 

  • Khezerlou A, Amini S, Moayyed M (2008) Petrology, geochemistry and mineral chemistry of potassic and ultrapotassic rocks of north West Marand, NW Iran. Kharazmi Science 3:183–204 (in Persian)

    Google Scholar 

  • Kieffer B, Arndt N, Lapierre H et al (2004) Flood and shield basalts from Ethiopia: magmas from the African superswell. Petrology 45:793–834

    Article  Google Scholar 

  • Koohestani H, Ghaderi M, Emami MH et al (2013) Geochemistry whole rocks and Sr and Nd isotopes from host volcanic rocks of Ag and Au in Chahzard, Uromieh-Dokhtar arc. Geology Science 90:9–24 (in Persian)

    Google Scholar 

  • Le Bas MJ, Le Maître RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. Petrology 27:745–750

    Article  Google Scholar 

  • Leake BE, Woolley AR, Arps CES et al (1997) Nomenclature of amphiboles: report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names. Can Mineral 35:219–246

    Google Scholar 

  • McDonough WF, Frey FA (1989) Rare earth elements in upper mantle rocks. In: Lipin BR, Mckay GA (eds) Geochemistry and mineralogy of rare earth elements, Rev Mineral, vol 21, pp 99–145

    Google Scholar 

  • McDonough WF, Sun SS, Ringwood AE, Jagoutz E, Hofmann AW (1992) Potassium, rubidium and cesium in the earth and moon and the evolution of the mantle of the earth. Geochim Cosmochim Acta 56:1001–1012

    Article  Google Scholar 

  • Medaris LG Jr, Jelinek E, Beard BL, Valley JW, Spicuzza MJ, Strnad L (2013) Garnet pyroxenite in the Biskupice peridotite, bohemian massif: anatomy of a Variscan high-pressure cumulate. J Geosci 58:3–19

    Article  Google Scholar 

  • Moayyed M, Hosseinzadeh G (2012) Petrography and petrology of A-type granitoids in east of Mishu (Iran) with a view on the importance of geodynamic. Crystallography and Mineralogy 19:115–130 (in Persian)

    Google Scholar 

  • Moayyed M, Moazzen M (2002) A new view to the Paleo-Tethys suture line position in Iran. Geological Society 9:716–717 (in Persian)

    Google Scholar 

  • Moradian A, Peacock SM, Rushmer T (1997) Geochemistry, geochronology and petrography of feldspathoid bearing rocks in Urumieh-Dokhtar Volcanic Belt, Iran. Dissertation, University of Wollongong, Australia

  • Morimoto N, Kitamura M (1983) Q-J diagram for classification of pyroxenes. J Japan Assoc Min Petrol Econ Geol 78:14 (in Japanese)

    Google Scholar 

  • Morimoto N, Fabrise J, Ferguson A et al (1988) Nomenclature of pyroxenes. Mineral Mag 52:535–555

    Article  Google Scholar 

  • Nachit H, Ibhi A, Abia EH, Ohoud MB (2005) Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites. Compt Rendus Geosci 337:1415–1420

    Article  Google Scholar 

  • Nasir S, Al-Sayigh A, Alharthy A, Al-Lazki A (2006) Geochemistry and petrology of tertiary volcanic rocks and related ultramafic xenoliths from the central and eastern Oman Mountains. Lithos 90:249–270

    Article  Google Scholar 

  • Nicolas A (1989) Structures in ophiolites and dynamics of oceanic lithosphere. Kluwer, Dordrecht

  • Orejana D, Villaseca C, Paterson BA (2006) Geochemistry of pyroxenitic and hornblenditic xenoliths in alkaline lamprophyres from the Spanish central system. Lithos 86:167–196

    Article  Google Scholar 

  • Pang KN, Chung SL, Zarrinkoub MH, Lin YC, Lee HY, Lo CH, Khatib MM (2013) Iranian ultrapotassic volcanism at ~11 Ma signifies the initiation of postcollisional magmatism in the Arabia-Eurasia collision zone. Terra Nov. 25:405–413

    Article  Google Scholar 

  • Patchett PJ, Chase CG (2002) Role of transform continental margins in major crustal growth episodes. Geology 30:39–42

    Article  Google Scholar 

  • Pearce JA, Norry MJ (1976) Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contrib Mineral Petrol 69:33–47

    Article  Google Scholar 

  • Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks in the Kastamonu area, northern Turkey. Contrib Mineral Petrol 58:63–81

    Article  Google Scholar 

  • Pin C, Santos Zalduegui JF (1997) Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: application to isotopic analyses of silicate rocks. Anal Chem Acta 339:79–89

    Article  Google Scholar 

  • Platevoet B, Elitok O, Guillou H et al (2014) Petrology of quaternary volcanic rocks and related plutonic xenoliths from Gölcük volcano, Isparta angle, Turkey: origin and evolution of the high-K alkaline series. J Asian Earth Sci 92:53–76

    Article  Google Scholar 

  • Porreca C, Selverstone J, Samuels K (2006) Pyroxenite xenoliths from the Rio Puerco volcanic field, New Mexico: melt metasomatism at the margin of the Rio Grande rift. Geosphere 2:333–351. doi:10.1130/GES00058.1

    Article  Google Scholar 

  • Putirca K, Johnson M, Kinzler R, Longhi J, Walker D (1996) Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0-30 kbar. Contrib Mineral Petrol 123:92–108

    Article  Google Scholar 

  • Putirka K (2008) Thermometers and barometers for volcanic systems. Mineral Soc America 69:61–120

    Google Scholar 

  • Ricou LE (1971) Le croissant ophiolitique péri-arabe, une ceinture de nappes mise en place au crétacé supérieur. Rev Géogr Phys Géol Dyn 13:327–350

    Google Scholar 

  • Rollinson H (1993) Using geochemical data: evalution, presentation, interpretation. Longman, New York

    Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. In: Rudnick RL (ed) The crust, Treatise on Geochemistry 3. Elsevier-Pergamon, Oxford, pp 1–64

    Google Scholar 

  • Saadat S, Stern CR (2012) Petrochemistry of a xenolith-bearing Neogene alkali olivine basalt from northeastern Iran. J Volcanol Geotherm Res 225–226:13–29

    Article  Google Scholar 

  • Saunders AD, Norry MJ, Tarney J (1991) Fluid influence on the trace element composition of subduction zone magmas. Phil Trans R Soc London 335:377–392

    Article  Google Scholar 

  • Searle MP, Cox J (1999) Tectonic setting, origin and obduction of the Oman ophiolite. Geol Soc Am Bull 111:104–122

    Article  Google Scholar 

  • Shafaii Moghadam H, Ghorbani G, Zaki Khedr M et al (2013) Late Miocene K-rich volcanism in the Eslamieh peninsula (Saray), NW Iran: Implications for geodynamic evolution of the Turkish-Iranian High Plateau. Gondwana Res. doi:10.1016/j.gr

    Google Scholar 

  • Sial AN, Ferreira VP, Fallick AE, Jeronimo M, Cruz M (1998) Amphibole-rich clots in calcalkalic granitoids in the Borborema province northeastern Brazil. J S Am Earth Sci 11:457–471

    Article  Google Scholar 

  • Speer JA (1984) Mica in igneous rocks. In: bailey SW (ed) micas. Rev Mineral 13:299–356

    Google Scholar 

  • Stöcklin J (1974) Possible ancient continental margins in Iran. In: Burk CA, Drake CL (eds) The geology of continental margins. Springer, New York, pp 873–887

    Chapter  Google Scholar 

  • Stöcklin J (1977) Structural correlation of the alpine ranges between Iran and Central Asia. Mem Ser Soc Geol France 8:333–353

    Google Scholar 

  • Whitechurch H, Juteau T, Montigny R (1984) The eastern Mediterranean ophiolites (Turkey, Syria, Cyprus): their contribution to the history of the neo-Tethys. In: Dixon JE, Robertson AHF (eds) The geological evolution of the eastern Mediterranean, Geol Soc London Spec Publ, vol 17, pp 425–441

    Google Scholar 

  • Willson M (1989) Igneous petrogenesis; a global tectonic approach. Unwin Hyman, London

    Book  Google Scholar 

  • Wood IA, Joron LL, Treuil M, Norry L, Tarney J (1979) Elemental and Sr isotope variation in basic lavas from Iceland and surrounding ocean floor. Contrib Mineral Petrol 70:319–339

    Article  Google Scholar 

  • Xu Y (2002) Evidence for crustal components in the mantle and constraints on crustal recycling mechanisms: pyroxenite xenoliths from Hannuoba, North China. Chem Geol 182:301–322

    Article  Google Scholar 

  • Yang JH, Chung SL, Wilde SA, Wu F, Chu MF, Lo CH, Fan H (2005) Petrogenesis of post-orogenic syenites in the Sulu orogenic belt, East China: geochronological, geochemical and Nd–Sr isotopic evidence. Chem Geol 214:99–125

    Article  Google Scholar 

  • Ying J, Zhang H, Tang Y, Su B, Zhou X (2013) Diverse crustal components in pyroxenite xenoliths from Junan, Sulu orogenic belt: implications for lithospheric modification invoked by continental subduction. Chem Geol 356:181–192

    Article  Google Scholar 

  • Zhang HF, Nakamura E, Kobayashi K, Ying JF, Tang YJ (2010) Recycled crustal melt injection into lithospheric mantle: implication from cumulative composite and pyroxenite xenoliths. Int J Earth Sci 99:1167–1186

    Article  Google Scholar 

  • Zindler A, Hart SR (1986) Chemical geodynamics. Annu Rev Earth Planet Sci 14:493–571

    Article  Google Scholar 

Download references

Acknowledgements

This work is a part of the PhD thesis of the first author. Field studies were supported by Tabriz University and the necessary analyses were supported through the Geosciences Environment Toulouse Laboratory (Toulouse University, CNRS, CNES, IRD, UPS, France). We thank Dr. Mohammad Kilzi for his help with the preparation of the analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Akbar Khezerlou.

Additional information

Editorial handling: L. Fedele

Electronic supplementary material

ESM 1

(DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khezerlou, A.A., Amel, N., Gregoire, M. et al. Geochemistry and mineral chemistry of pyroxenite xenoliths and host volcanic alkaline rocks from north west of Marand (NW Iran). Miner Petrol 111, 865–885 (2017). https://doi.org/10.1007/s00710-017-0502-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-017-0502-6

Keywords

Navigation