Mineralogy and Petrology

, Volume 111, Issue 5, pp 777–792 | Cite as

Constraining late stage melt-peridotite interaction in the lithospheric mantle of southern Ethiopia: evidence from lithium elemental and isotopic compositions

  • Melesse Alemayehu
  • Hong-Fu Zhang
  • Hans-Michael Seitz
Original Paper


Lithium (Li) elemental and isotopic compositions for mineral separates of coexisting olivine, orthopyroxene and clinopyroxene of mantle xenoliths from the Quaternary volcanic rocks of southern Ethiopian rift (Dillo and Megado) reveal the influence of late stage melt-peridotite interaction on the early depleted and variably metasomatized lithospheric mantle. Two types of lherzolites are reported (LREE-depleted La/Sm(N) = 0.11–0.37 × Cl and LREE-enriched, La/Sm(N) = 1.88–15.72 × Cl). The depleted lherzolites have variable range in Li concentration (olivine: 2.1–5.4 ppm; opx: 1.1–2.3 ppm; cpx: 1.0–1.8 ppm) and in Li isotopic composition (δ7Li in olivine: −9.4 to 1.5‰; in opx: −4.5 to 3.6‰; in cpx: −17.0 to 4.8‰), indicating strong disequilibrium in Li partitioning and Li isotope fractionation between samples. The enriched lherzolites have limited range in both Li abundances (olivine: 2.7–3.0 ppm; opx: 1.1–3.1 ppm; cpx: 1.1–2.3 ppm) and Li isotopic compositions (δ7Li in olivine: −1.3 to +1.3‰; in opx: −2.0 to +5.0‰; in cpx: −7.5 to +4.8‰), suggest that the earlier metasomatic event which lead to LREE enrichment could also homogenize the Li contents and its isotopes. The enriched harzburgite and clinopyroxenite minerals show limited variation in Li abundances and variable Li isotopic compositions. The Li enrichments of olivine and clinopyroxene correlate neither with the incompatible trace element enrichment nor with the Sr-Nd isotopic compositions of clinopyroxene. These observations indicate that the metasomatic events which are responsible for the LREE enrichment and for the Li addition are distinct, whereby the LREE-enrichment pre-dates the influx of Li. The presence of large Li isotopic disequilibria within and between minerals of depleted and enriched peridotites suggest that the lithospheric mantle beneath the southern Ethiopian rift has experienced recent melt-peridotite interaction. Thus, the Li data set reported in this study offer new additional evidence for the existence of late stage metasomatism, which probably occurred at shallow depth briefly before and/or during entrainment and ascent of mantle xenoliths to the surface.


Dillo-Megado Mantle xenoliths Li isotope Melt-peridotite interaction 



Melesse Alemayehu is most appreciative of his postdoctoral fellowship grant, obtained for developing countries from the Chinese Academy of Sciences (Grant No. 2014FFBZ003). The authors would like to thank Dr. Ling Xiaoxiao for assistance in Li elemental and isotopic analysis using SIMS. Prof. Yan-Jie Tang is also thanked for giving detailed scientific comments and English correction on an earlier version of this manuscript. Our appreciations also go to Prof. Jeff Harris and Dr. Patrick Asamoah Sakyi for proof reading of the revised version of this manuscript. The insightful and constructive comments of Dr. Tomas Magna, an anonymous reviewer, and editor Prof. Xisheng Xu are gratefully acknowledged. The authors also extend their appreciation to (a) the Geological Survey of Ethiopia, for providing materials related to the study area, (b) the Addis Ababa Science and Technology University, School of Earth Science and Mining Engineering, (c) the University of Gondar and Arba Minch Earth Science Department for fieldwork material support. Finally, the authors acknowledge the financial support from the National Science Foundation of China to Melesse Alemayehu (grant 41450110429) and Hong-Fu Zhang (grant 91414301).


  1. Ackerman L, Spacek P, Magna T, Ulrych J, Svojtka M, Hegner E, Balogh K (2013) Alkaline and carbonate-rich melt metasomatism and melting of subcontinental lithospheric mantle: evidence from mantle xenoliths, NE Bavaria, bohemian massif. J Petrol 54:2597–2633CrossRefGoogle Scholar
  2. Agostini S, Ryan JG, Tonarini S, Innocenti F (2008) Drying and dying of a subducted slab: coupled Li and B isotope variations in western Anatolia Cenozoic volcanism. Earth Planet Sci Lett 272:139–147CrossRefGoogle Scholar
  3. Alemayehu M, Zhang HF, Zhu B, Fentie B, Abraham A, Haji M (2016a) Petrological constraints on evolution of continental lithospheric mantle beneath the northwestern Ethiopian plateau: insight from mantle xenoliths from the Gundeweyn area, east Gojam, Ethiopia. Lithos 240-243:295–308CrossRefGoogle Scholar
  4. Alemayehu M, Zhang HF, Sakyi PA (2016b) Nature and evolution of lithospheric mantle beneath the southern Ethiopian rift zone: evidence from petrology and geochemistry of mantle xenoliths. Int J Earth Sci DOI. doi: 10.1007/s00531-016-1342-z Google Scholar
  5. Aulbach S, Rudnick RL (2009) Origins of non-equilibrium lithium isotope fractionation in xenolithic peridotite minerals: examples from Tanzania. Chem Geol 258:17–27CrossRefGoogle Scholar
  6. Aulbach S, Rudnick RL, McDonough WF (2008) Li-Sr-Nd isotope signatures of the plume and cratonic lithospheric mantle beneath the margin of the rifted Tanzanian craton (Labait). Contrib Mineral Petrol 155:79–92CrossRefGoogle Scholar
  7. Ayalew D, Yirgu G, Ketefo E, Barbey P, Ludden J (2003) Intrusive equivalents of food volcanics: evidence from petrology of xenoliths in quaternary tana basanites Ethiopia. Ethiop J Sci 26:93–102Google Scholar
  8. Ayalew D, Arndt N, Bastien F, Yirgu G, Kieffer B (2009) A new mantle xenolith locality from Simien shield volcano, NW Ethiopia. Geol Mag 146:144–149CrossRefGoogle Scholar
  9. Baker BH, Mohr P, Williams RAJ (1972) Geology of the eastern rift system of Africa. Geology 100:200–211Google Scholar
  10. Beccaluva L, Bianchini G, Natali C, Siena F (2009) Continental flood basalts and mantle plumes: a case study of the northern Ethiopian plateau. J Petrol 50:1377–1403CrossRefGoogle Scholar
  11. Beccaluva L, Bianchini G, Ellam RM, Natali C, Santato A, Siena F, Stuart FM (2011) Peridotite xenoliths from Ethiopia: inferences on mantle processes from plume to rift settings. Geol Soc Am Spec Papers 478:77–104CrossRefGoogle Scholar
  12. Beck P, Chaussidon M, Barrat JA, Gillet P, Bohn M (2006) Diffusion induced Li isotopic fractionation during the cooling of magmatic rocks: the case of pyroxene phenocrysts from nakhlite meteorites. Geochim Cosmochim Acta 70:4813–4825CrossRefGoogle Scholar
  13. Bianchini G, Julia G, Bryce JG, Blichert-Toft J, Beccaluva L, Natali C (2014) Mantle dynamics and secular variations beneath the east African rift: insights from peridotite xenoliths (mega, Ethiopia). Chem Geol 386:49–58CrossRefGoogle Scholar
  14. Brenan JM, Neroda E, Lundstrom CC, Shaw HF, Ryerson FJ, Phinney DL (1998) Behaviour of boron, beryllium and lithium during melting and crystallization: constraints from mineral-melt partitioning experiments. Geochim Cosmochim Acta 62:2129–2141CrossRefGoogle Scholar
  15. Brooker RA, Jamesl RH, Blundy JD (2004) Trace elements and Li isotope systematics in Zabargad peridotites: evidence of ancient subduction processes in the Red Sea mantle. Chem Geol 212:179–204CrossRefGoogle Scholar
  16. Chan LH, Frey FA (2003) Lithium isotope geochemistry of the Hawaiian plume: results from the Hawaii scientific drilling project and Koolau volcano. Geochem Geophys Geosyst 4. doi: 10.1029/2002GC000365
  17. Chan LH, Edmond JM, Thompson G, Gillis K (1992) Lithium isotopic composition of submarine basalts—implications for the lithium cycle in the oceans. Earth Planet Sci Lett 108:151–160CrossRefGoogle Scholar
  18. Chan LH, Alt JC, Teagle DAH (2002a) Lithium and lithium isotope profiles through the upper oceanic crust: a study of seawater basalt exchange at ODP sites 504B and 896A. Earth Planet Sci Lett 201:187–201CrossRefGoogle Scholar
  19. Chan LH, Leeman WP, You CF (2002b) Lithium isotopic composition of central American volcanic arc lavas: implications for modification of sub-arc mantle by slab-derived fluids: correction. Chem Geol 182:293–300CrossRefGoogle Scholar
  20. Chan LH, Lassiter JC, Hauri EH, Hart SR, Blusztajn J (2009) Lithium isotope systematics of lavas from the cook-Austral Islands: constraints on the origin of HIMU mantle. Earth Planet Sci Lett 277:433–442CrossRefGoogle Scholar
  21. Coltorti M, Bonadiman C, Hinton RW, Siena F, Upton BGJ (1999) Carbonatite metasomatism of the oceanic upper mantle: evidence from clinopyroxenes and glasses in ultramafic xenoliths of Grande Comore, Indian Ocean. J Petrol 40:133–165CrossRefGoogle Scholar
  22. Conticelli S, Sintoni MF, Abebe T, Mazzarini F, Manetti P (1999) Petrology and geochemistry of ultramafic xenoliths and host lavas from Ethiopian volcanic province; an insight into the upper mantle under eastern Africa. Acta Vulcanol 11:143–151Google Scholar
  23. Davidson A (1983) The Omo river project: reconnaissance geology and geochemistry of parts of Ilubabor, Kefa, gem-Gofa, and Sidamo. Ethiopia, Bull Ethiop Insti Geol SurvGoogle Scholar
  24. Ebinger C, Bechtel C, Forsyth D, Bowin C (1989) Effective elastic plate thickness beneath the east African and afar plateaus and dynamic compensation for the uplifts. J Geophys Res 94:2883–2901CrossRefGoogle Scholar
  25. Ebinger CJ, Yemane T, Weldable G, Agonising JL, Walter RC (1993) Late Eocene-recent volcanism and faulting in the southern main Ethiopian rift. J Geol Soc Lon 50:99–108CrossRefGoogle Scholar
  26. Eggins SM, Rudnick RL, McDonough WF (1998) The composition of peridotites and their minerals: a laser-ablation ICP-MS study. Earth Planet Sci Lett 154:53–71CrossRefGoogle Scholar
  27. Elliott T, Thomas A, Jeffcoate A, Niu Y (2006) Lithium isotope evidence for subduction enriched mantle in the source of mid-ocean-ridge basalts. Nature 443(7111):565–568CrossRefGoogle Scholar
  28. Ferrando S, Frezzotti ML, Neumann ER, Astis DG, Peccerillo A, Dereje A, Gezahegn Y, Teklewold A (2007) Composition and thermal structure of the lithosphere beneath the Ethiopian plateau: evidence from mantle xenoliths in basanites, Injibara, Lake Tana Province. Mineral Petrol 93:47–78CrossRefGoogle Scholar
  29. Flesh GD, Anderson AR, Svec HJ (1973) A secondary isotopic standard for 7Li/6Li determination. Int J Mass Spectrom Ion Phys 12:265–272CrossRefGoogle Scholar
  30. Frezzotti ML, Ferrando S, Peccerillo A, Petrelli M, Tecce F, Perucchi A (2010) Chlorine-rich metasomatic H2O-CO2 fluids in amphibole-bearing peridotites from Injibara (Lake tana region, Ethiopian plateau): nature and evolution of volatiles in the mantle of a region of continental flood basalts. Geochim Cosmochim Acta 74:3023–3039CrossRefGoogle Scholar
  31. Furman T, Kaleta K, Bryce J, Hanan BB (2006) Tertiary mafic lavas of Turkana, Kenya: constraints on east African plume structure and the occurrence of high-micro volcanism in Africa. J Petrol 47:1221–1244CrossRefGoogle Scholar
  32. Gallagher K, Elliott T (2009) Fractionation of lithium isotopes in magmatic systems as a natural consequence of cooling. Earth Planet Sci Lett 278:286–296CrossRefGoogle Scholar
  33. Gao S, Rudnick R, Carlson RW, McDonough WF, Liu YS (2002) Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth Planet Sci Lett 198:307–322CrossRefGoogle Scholar
  34. George R, Rogers N (2002) Plume dynamics beneath the African plate inferred from the geochemistry of the tertiary basalts of southern Ethiopia. Contrib Mineral Petrol 144:286–304CrossRefGoogle Scholar
  35. George R, Rogers N, Kelley S (1998) Earliest magmatism in Ethiopia: evidence for two mantle plumes in one flood basalt province. Geology 26:923–926CrossRefGoogle Scholar
  36. Gu XY, Deloule E, France L, Ingrin J (2016) Multi-stage metasomatism revealed by trace element and Li isotope distributions in minerals of peridotite xenoliths from Allègre volcano (French massif central). Lithos 264:158–174CrossRefGoogle Scholar
  37. Halama R, McDonough WF, Rudnick RL, Bell K (2008) Tracking the lithium isotopic evolution of the mantle using carbonatites. Earth Planet Sci Lett 265:726–742CrossRefGoogle Scholar
  38. Halama R, Savov IP, Rudnick RL, McDonough WF (2009) Insights into Li and Li isotope cycling and sub-arc metasomatism from veined mantle xenoliths, Kamchatka. Contrib Mineral Petrol 158:197–222CrossRefGoogle Scholar
  39. Ionov DA, Seitz HM (2008) Lithium abundances and isotopic compositions in mantle xenoliths from subduction and intra-plate settings: mantle sources vs. eruption histories. Earth Planet Sci Lett 266:316–331CrossRefGoogle Scholar
  40. Jeffcoate AB, Elliott T, Kasemann SA, Ionov D, Cooper K, Brooker R (2007) Li isotope fractionation in peridotites and mafic melts. Geochim Cosmochim Acta 71:202–218CrossRefGoogle Scholar
  41. Kampunzu AB, Mohr P (1991) Magmatic evolution and petrogenesis in the east African rift system. In: Kampunzu AB, Lubala RT (eds) Magmatism in extensional structural settings. Springer, Berlin Heidelberg New York, pp 85–136CrossRefGoogle Scholar
  42. Kieffer B, Arndt N, Lapierre H, Bastien F, Bosch D, Pecher A, Yirgu G, Ayalew D, Weis D, Jerram DA, Keller F, Meugniot C (2004) Flood and shield basalts from Ethiopia: magmas from the African superswell. J Petrol 45:793–834CrossRefGoogle Scholar
  43. Košler J, Magna T, Mlcoch B, Mixa P, Nýlt D, Holub FV (2009) Combined Sr, Nd, Pb and Li isotope geochemistry of alkaline lavas from northern James Ross Island (Antarctic peninsula) and implications for back-arc magma formation. Chem Geol 258:207–218CrossRefGoogle Scholar
  44. Lundstrom CC, Chaussidon M, Hsui AT, Kelemen P, Zimmerman M (2005) Observations of Li isotopic variations in the trinity ophiolite: evidence for isotopic fractionation by diffusion during mantle melting. Geochim Cosmochim Acta 69(3):735–751CrossRefGoogle Scholar
  45. Magna T, Wiechert U, Halliday AN (2006) New constraints on the lithium isotope compositions of the moon and terrestrial planets. Earth Planet Sci Lett 243:336–353CrossRefGoogle Scholar
  46. Magna T, Ionov DA, Oberli F, Wiechert U (2008) Links between mantle metasomatism and lithium isotopes: evidence from glass-bearing and cryptically metasomatized xenoliths from Mongolia. Earth Planet Sci Lett 276:214–222CrossRefGoogle Scholar
  47. Marschall HR, Pogge von Strandmann PAE, Seitz HM, Elliott T, Niu Y (2007) The lithium isotopic composition of orogenic eclogites and deep subducted slabs. Earth Planet Sci Lett 262:563–580CrossRefGoogle Scholar
  48. Mercier JCC, Nicolas A (1975) Textures and fabrics of upper mantle peridotites as illustrated by basalt xenoliths. J Petrol 16:454–487CrossRefGoogle Scholar
  49. Meshesha D, Shinjo R, Matsumura R, Chekol T (2011) Metasomatised lithospheric mantle beneath Turkana depression in southern Ethiopia (the East Africa rift): geochemical and Sr-Nd-Pb isotopic characteristics. Contrib Mineral Petrol 162:889–907CrossRefGoogle Scholar
  50. Moriguti T, Nakamura E (1998) Across-arc variation of Li isotopes in lavas and implications for crust/mantle recycling at subduction zones. Earth Planet Sci Lett 163:167–174CrossRefGoogle Scholar
  51. Nakamura E, Kushiro I (1998) Trace element diffusion in jadeite and diopside melts at high pressures and its geochemical implication. Geochim Cosmochim Acta 62:3151–3160CrossRefGoogle Scholar
  52. Nishio Y, Nakai S, Yamamoto J, Sumino H, Matsumoto T, Prikhod’ko VS, Arai S (2004) Lithium isotopic systematics of the mantle-derived ultramafic xenoliths: implications for EM1 origin. Earth Planet Sci Lett 217:245–261CrossRefGoogle Scholar
  53. Nishio Y, Nakai S, Kogiso T, Barsczus HG (2005) Lithium, strontium, and neodymium isotopic compositions of oceanic island basalts in the Polynesian region: constraints on a Polynesian HIMU origin. Geochem J 39:91–103CrossRefGoogle Scholar
  54. Nishio Y, Nakai S, Ishii T, Sano Y (2007) Isotope systematics of Li, Sr, Nd, and volatiles in Indian Ocean MORBs of the Rodrigues Triple Junction: constraints on the origin of the DUPAL anomaly. Geochim Cosmochim Acta 71(3):745–759Google Scholar
  55. Orlando A, Abebe T, Manetti P, Santo AP, Corti G (2006) Petrology of mantle xenoliths from Megado and Dillo, Kenya rift, southern Ethiopia. Ofioliti 31:71–87Google Scholar
  56. Ottolini L, Laporte D, Raffone N, Devidal JL, Le FB (2009) New experimental determination of Li and B partition coefficients during upper mantle partial melting. Contrib Mineral Petrol 157:313–325CrossRefGoogle Scholar
  57. Piccardo GB, Müntener O, Zanetti A, Pettke T (2004) Ophiolitic peridotites of the alpine–Apennine system: mantle processes and geodynamic relevance. Int Geol Rev 46:1119–1159CrossRefGoogle Scholar
  58. Rampone E, Romairone A, Hofmann AW (2004) Contrasting bulk and mineral chemistry in depleted peridotites: evidence for reactive porous flow. Earth Planet Sci Lett 218:491–506CrossRefGoogle Scholar
  59. Reisberg L, Lorand JB, Bedini RM (2004) Reliability of Os model ages in pervasively metasomatized continental lithosphere: a case study of Sidamo spinel peridotite xenoliths (east African rift, Ethiopia). Chem Geol 208:119–140CrossRefGoogle Scholar
  60. Rogers S, Dautria JM, Coulon C, Pik R, Yirgu G, Michard A, Legros P, Ayalew D (1999) An insight on the nature, composition and evolution of the lithospheric mantle beneath the north-western Ethiopian plateau; the ultrabasic xenoliths from the tana Lake Province. Acta Vulcanol 11:161–168Google Scholar
  61. Rooney O, Furman T, Yirgu G, Ayalew D (2005) Structure of Ethiopian lithosphere: xenoliths evidence in the main Ethiopian rift. Geochim Cosmochim Acta 69:3889–3910CrossRefGoogle Scholar
  62. Rudnick RL, Ionov DA (2007) Lithium elemental and isotopic disequilibrium in minerals from peridotite xenoliths from far East Russia: product of recent melt/fluid-rock reaction. Earth Planet Sci Lett 256:278–293CrossRefGoogle Scholar
  63. Rudnick RL, McDonough WL, Chappell BW (1993) Carbonatite metasomatism in the northern Tanzanian mantle: petrographic and geochemical characteristics. Earth Planet Sci Lett 114:463–475CrossRefGoogle Scholar
  64. Seitz HM, Woodland AB (2000) The distribution of lithium in peridotitic and pyroxenitic mantle lithologies-an indicator of magmatic and metasomatic processes. Chem Geol 166:47–64CrossRefGoogle Scholar
  65. Seitz HM, Brey GP, Lahaye Y, Durali S, Weyer S (2004) Lithium isotopic signatures of peridotite xenoliths and isotopic fractionation at high temperature between olivine and pyroxenes. Chem Geol 212:163–177CrossRefGoogle Scholar
  66. Stewart K, Rogers N (1996) Mantle plume and lithosphere contributions to basalts from southern Ethiopia. Earth Planet Sci Lett 139:195–211CrossRefGoogle Scholar
  67. Su BX, Zhang HF, Deloule E, Sakyi PA, Xiao Y, Tang YJ, Hu Y, Ying JF, Liu PP (2012) Extremely high Li and low δ7Li signatures in the lithospheric mantle. Chem Geol 292–293:149–157CrossRefGoogle Scholar
  68. Su BX, Zhang HF, Deloule E, Vigier N, Sakyi PA (2014) Lithium elemental and isotopic variations in rock-melt interaction. Chemie der Erde -Geochem 74(4):705–713CrossRefGoogle Scholar
  69. Su BX, Gu XY, Deloule E, Zhang HF, Li QL, Li XH, Vigier N, Tang YJ, Tang GQ, Liu Y, Pang KN, Brewer A, Mao Q, Ma YG (2015) Potential orthopyroxene, clinopyroxene and olivine reference materials for in situ lithium isotope determination. Geostand Geoanal Res 39:357–369CrossRefGoogle Scholar
  70. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42(1):313–345Google Scholar
  71. Tang YJ, Zhang HF, Nakamura E, Moriguti T, Kobayashi K, Ying JF (2007a) Lithium isotopic systematics of peridotite xenoliths from Hannuoba, North China craton: implications for melt/rock interaction in the considerably thinned lithospheric mantle. Geochim Cosmochim Acta 71:4327–4341CrossRefGoogle Scholar
  72. Tang YJ, Zhang HF, Nakamura E, Moriguti T, Kobayashi K, Ying JF (2007b) Lithium isotopic systematics of peridotite xenoliths from Hannuoba, North China craton: implications for melt/rock interaction in the considerably thinned lithospheric mantle. Geochim Cosmochim Acta 71:4327–4341CrossRefGoogle Scholar
  73. Tang YJ, Zhang HF, Ying JF (2007c) Review of the lithium isotope systems as a geochemical tracer. Int Geol Rev 49:274–388CrossRefGoogle Scholar
  74. Tang YJ, Zhang HF, Nakamura E, Ying JF (2011) Multistage melt/fluid-peridotite interactions in the refertilized lithospheric mantle beneath the North China craton: constraints from the Li–Sr–Nd isotopic disequilibrium between minerals of peridotite xenoliths. Contrib Mineral Petrol 161:845–861CrossRefGoogle Scholar
  75. Tang YJ, Zhang HF, Deloule E, Su BX, Ying JF, Xiao Y, Hu Y (2012) Slab-derived lithium isotopic signatures in mantle xenoliths from northeastern North China craton. Lithos 149:79–90CrossRefGoogle Scholar
  76. Tang YJ, Zhang HF, Deloule E, Su BX, Ying JF, Santosh M, Xiao Y (2014) Abnormal lithium isotope composition from the ancient lithospheric mantle beneath the North China Craton. Sci Rep 4. doi: 10.1038/srep04274
  77. Teng FZ, McDonough WF, Rudnick RL, Dalpé C, Tomascak PB, Chappell BW, Gao S (2004) Lithium isotopic composition and concentration of the upper continental crust. Geochim Cosmochim Acta 68:4167–4178CrossRefGoogle Scholar
  78. Teng FZ, Rudnick RL, McDonough WF, Gao S, Tomascak PB, Liu YS (2008) Lithium isotopic composition and concentration of the deep continental crust. Chem Geol 255:47–59CrossRefGoogle Scholar
  79. Tomascak PB (2004) Developments in the understanding and application of lithium isotopes in the earth and planetary sciences. In: Johnson CM, beard BI. Albarede F (eds) Geochemistry of non-traditional stable isotope: Rev Mineral Geochem 55:153–195Google Scholar
  80. Tomascak PB, Tera F, Helz R, Walker RJ (1999) The absence of lithium isotope fractionation during basalt differentiation: new measurements by multicollector sector ICP-MS. Geochim Cosmochim Acta 63:907–910CrossRefGoogle Scholar
  81. Tomascak PB, Ryan JG, Defant MJ (2000) Lithium isotope evidence for light element decoupling in the Panama sub-arc mantle. Geology 28:507–510CrossRefGoogle Scholar
  82. Tomascak PB, Widom E, Benton LD, Goldstein SL, Ryan JG (2002) The control of lithium budgets in island arcs. Earth Planet Sci Lett 196:227–238CrossRefGoogle Scholar
  83. Tomascak PB, Langmuir CH, le Roux PJ, Shirey SB (2008) Lithium isotopes in global mid-ocean ridge basalts. Geochim Cosmochim Acta 72:1626–1637CrossRefGoogle Scholar
  84. Tomascak PB, Manga T, Dohmen R (2016) Advances in lithium isotope geochemistry. Springer pp:119–146Google Scholar
  85. Tommasini S, Manetti P, Innocenti I, Sintoni MF, Conticelli S, Abebe T (2005) The Ethiopian subcontinental mantle domains: geochemical evidence from Cenozoic massif lavas. Mineral and petrol 84:259–281CrossRefGoogle Scholar
  86. Vlastélic I, Koga K, Chauvel C, Jacques G, Télouk P (2009) Survival of lithium isotopic heterogeneities in the mantle supported by HIMU-lavas from Rurutu Island, austral chain. Earth Planet Sci Lett 286:456–466CrossRefGoogle Scholar
  87. Wagner C, Deloule E (2007) Behaviour of Li and its isotopes during metasomatism of French massif central lherzolites. Geochim Cosmochem Acta 71:4279–4296CrossRefGoogle Scholar
  88. Weeraratne DS, Forsythe DW, Fischer KM, Nyblade AA (2003) Evidence for an upper mantle plume beneath the Tanzanian craton from Rayleigh wave tomography. J Geophys Res 108:2427CrossRefGoogle Scholar
  89. WoldeGabriel G, Aronson JL, Walter RC (1990) Geology, geochronology and rift basin development in the central sector of the main Ethiopia rift. Geol Soc Am Bull 102:439–458CrossRefGoogle Scholar
  90. Woodland AB, Seitz HM, Yaxley GM (2004) Varying behavior of Li in metasomatised spinel peridotite xenoliths from western Victoria, Australia. Lithos 75:55–66CrossRefGoogle Scholar
  91. Wunder B, Meixner A, Romer RL, Heinrich W (2006) Temperature dependent isotopic fractionation of lithium between clinopyroxene and high-pressure hydrous fluids. Contrib Mineral Petrol 151:112–120CrossRefGoogle Scholar
  92. Xu YG, Ma JL, Huang XL, Iizuka Y, Chung SL, Wang YB, Wu XY (2004) Early cretaceous gabbroic complex from Yinan, Shandong Province: petrogenesis and mantle domains beneath the North China craton. Int J Earth Sci 93:1025–1041CrossRefGoogle Scholar
  93. Yaxley GM, Crawford AJ, Green DH (1991) Evidence for carbonatite metasomatism in spinel peridotite xenoliths from western Victoria, Australia. Earth Planet Sci Lett 107:305–317CrossRefGoogle Scholar
  94. Yemane T, WoldeGebriel G, Tesfaye S, Berhe SM, Durary S, Ebinger CJ, Kelley S (1999) Temporal and geochemical characteristics of tertiary volcanic rocks and tectonic history in the southern main Ethiopia rift and the adjacent volcanic fields. Acta Vulcanol 11:99–119Google Scholar
  95. Zack T, Tomascak PB, Rudnick RL, Dalpé C, McDonough WF (2003) Extremely light Li in orogenic eclogites: the role of isotope fractionation during dehydration in subducted oceanic crust. Earth Planet Sci Lett 208:279–290CrossRefGoogle Scholar
  96. Zanettine B, Justin-Visentin E, Nicoletti M, Petrucciani C (1978) The evolution of the Chencha escarpment and the Ganjuli graben (lake Abaya) in the southern Ethiopian rift. Neues Jahrb Geol Palaent, Monatsh 8:473–490Google Scholar
  97. Zhang HF, Deloule E, Tang YJ, Ying JF (2010) Melt/rock interaction in remains of re-fertilized Archean lithospheric mantle in Jiaodong peninsula, North China craton: Li isotopic evidence. Contrib Mineral Petrol 160:261–277CrossRefGoogle Scholar
  98. Zindler A, Hart S (1986) Chemical geodynamics. Annu Rev Earth Planet Sci 14(1):493–571Google Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  • Melesse Alemayehu
    • 1
    • 2
  • Hong-Fu Zhang
    • 1
    • 3
  • Hans-Michael Seitz
    • 4
  1. 1.State Key Laboratory of Lithospheric Evolution, Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina
  2. 2.School of Earth Science and Mining Engineering, Department of Earth ScienceAddis Ababa Science and Technology UniversityAddis AbabaEthiopia
  3. 3.State Key Laboratory of Continental Dynamics, Department of GeologyNorthwest UniversityXi’anChina
  4. 4.Institut für Geowissenschaften, MineralogieJ.W.Goethe-UniversitätFrankfurt/MainGermany

Personalised recommendations