Mineralogy and Petrology

, Volume 110, Issue 4, pp 471–489 | Cite as

Fibrous minerals from Somma-Vesuvius volcanic complex

  • Manuela RossiEmail author
  • Fabrizio Nestola
  • Maria R. Ghiara
  • Francesco Capitelli
Original Paper


A survey on fibrous minerals coming from the densely populated area of Campania around the Somma-Vesuvius volcanic complex (Italy) was performed by means of a multi-methodological approach, based on morphological analyses, EMPA/WDS and SEM/EDS applications, and unit-cell determination through X-ray diffraction data. Such mineralogical investigation aims to provide suitable tools to the identification of fibrous natural phases, to improve the knowledge of both geochemical, petrogenetic and regional mineralogy of Somma-Vesuvius area, and to emphasize the presence of minerals with fibrous habit in all volcanic environments. The survey also fits well in the calls of health and environment of Horizon 2020 program of the European Commission (Climate Action, Environment, Resource Efficiency and Raw Materials).


Asbestos Wollastonite Leucite Energy Dispersive Spectroscopic Crystal Chemical Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors are grateful to Mr. G. Chita (IC-CNR, Bari) for X-ray data collection. Special thanks to Johann G. Raith (Editor in Chief of Mineralogy and Petrolgy) for useful and appreciated suggestions.


  1. Agency for Toxic Substances and Disease Registry (2003) Report on the expert panel on health effects of asbestos and synthetic vitreous fibers: the influence of fiber length., accessed March 13, 2011
  2. Andreozzi GB, Ballirano P, Gianfagna A, Mazziotti-Tagliani S, Pacella A (2009) Structural and spectroscopic characterization of a suite of fibrous amphiboles with high environmental and health relevance from Biancavilla (Sicily, Italy). Am Mineral 94:1333–1340CrossRefGoogle Scholar
  3. Anthony JW, Bideaux RA, Bladh KW, Nichols MC (1990) Handbook of mineralogy. Mineral Data Publishing, Tucson Arizona, USA, by permission of the Mineralogical Society of AmericaGoogle Scholar
  4. Baris YI (1981) Zeolite bodies in human lungs from Turkey. Lab Invest 44:420–425Google Scholar
  5. Baris YI, Grandjean P (2006) Prospective study of mesothelioma mortality in Turkish villages with exposure to fibrous zeolite. J Natl Cancer Inst 98:414–417CrossRefGoogle Scholar
  6. Baris YI, Simonato L, Artvinli M, Pooley F, Saracci R, Skidmore J, Wagner C (1987) Epidemiological and environmental evidence of the health effects of exposure to erionite fibres: a four-year study in the Cappadocian region of Turkey. Int J Cancer 39:10–17CrossRefGoogle Scholar
  7. Berman DW, Crump KS (2008a) Update of potency factors for asbestos related lung cancer and mesothelioma. Crit Rev Toxicol 38:1–47CrossRefGoogle Scholar
  8. Berman DW, Crump KS (2008b) A meta-analysis of asbestos-related cancer risk that addresses fiber size and mineral type. Crit Rev Toxicol 38:49–73CrossRefGoogle Scholar
  9. Bojar HP, Walter F (2006) Fluoro-magnesio hastingsite from Dealul Uroi (Hunedoara county, Romania): Mineral data and crystal structure of a new amphibole end-member. Eur J Mineral 18:503–508CrossRefGoogle Scholar
  10. Campbell WJ, Blake RL, Brown LL, Cather EE, Sjober JJ, (1977) Selected silicate minerals and their asbestiform varieties. U.S. Bureau of Mines Information Circular 8751:56Google Scholar
  11. Carbone M, Baris YI, Bertino P et al (2011) Erionite exposure in North Dakota and Turkish villages with mesothelioma. PNAS Early Ed 16:13618–13623. doi: 10.1073/pnas.1105887108 CrossRefGoogle Scholar
  12. Cardile V, Renis M, Scifo C, Lombardo L, Gulino R, Mancari B, Panico A (2004) Behaviour of the new asbestos amphibole fluoro-edenite in different lung cell systems. Int J Biochem Cell Biol 36:849–860CrossRefGoogle Scholar
  13. Case BW, Abraham JL, Meeker G, Pooley FD, Pinkerton KE (2011) Applying definitions of “Asbestos” to environmental and “Low-Dose” exposure levels and health effects, particularly malignant Mesothelioma. J Toxicol Environ Health Part B 14:3–39CrossRefGoogle Scholar
  14. Comba P, Bianchi F, Fazzo L et al (2006) Cancer mortality in an area of Campania (Italy) characterized by multiple toxic dumping sites. Ann N Y Acad Sci 1076:449–461. doi: 10.1196/annals.1371.067 CrossRefGoogle Scholar
  15. Deer WA, Howie RA, Zussman J (2004) Rock-forming minerals, Framework silicates, 2nd edn. The Geological Society London, 4B:197Google Scholar
  16. Deer WA, Howie RA, Zussman J (2004) Rock-forming minerals, Single-chain silicates, 2nd edn. The Geological Society London, 2A:550Google Scholar
  17. Dement JM, Kuempel ED, Zumwalde RD, Smith RJ, Stayner LT, Loomis D (2008) Development of a fibre size-specific job-exposure matrix for airborne asbestos fibres. Occup Environ Med 65:605–612CrossRefGoogle Scholar
  18. Dement JM, Myers D, Loomis D, Richardson D, Wolf S (2009) Estimates of historical exposures by phase contrast and transmission electron microscopy in North Carolina USA asbestos textile plants. Occup Environ Med 66:574–583CrossRefGoogle Scholar
  19. Directive 2003/18/EC of the European Parliament and of the Council of 27 March 2003 amending Council Directive 83/477/EEC on the protection of workers from the risks related to exposure to asbestos at work (Text with EEA relevance). Official Journal L 097, 15/04/2003 P. 0048–0052Google Scholar
  20. Duisenberg AJM, Kroon-Batenburg LMJ, Schreurs AMM (2003) An intensity evaluation method: EVAL-14. J Appl Crystallogr 36:220–229CrossRefGoogle Scholar
  21. Eastern Research Group I (2003) Report on the peer consultation workshop to discuss a proposed protocol to assess asbestos related risk: Final report. EPA contract 68-C-98-148., accessed March 13, 2011
  22. Gianfagna A, Oberti R (2001) Fluoro-edenite from Biancavilla (Catania, Sicily, Italy): crystal chemistry of a new amphibole end-member. Am Mineral 86:1489–1493CrossRefGoogle Scholar
  23. Gianfagna A, Andreozzi GB, Ballirano P, Mazziotti-Tagliani S, Bruni BM (2007) Structural and chemical contrasts between prismatic and fibrous fluoro-edenite from Biancavilla, Sicily, Italy. Can Mineral 45(2):249–262CrossRefGoogle Scholar
  24. Gunter ME, Dyar MD, Twamley B, Foit FF Jr, Cornelius C (2003) Composition, Fe3+/ΣFe, and crystal structure of non-asbestiform and asbestiform amphiboles from Libby, Montana, U.S.A. Am Mineral 88:1970–1978CrossRefGoogle Scholar
  25. Gunter ME, Belluso E, Mottana A (2007) Amphiboles: environmental and health concerns. In: Rosso JJ (ed) Amphiboles: Crystal chemistry, occurrence, and health issues. M Rev Mineral Geochem, 67, p 453–516Google Scholar
  26. Hawthorne FC, Oberti R (2007) Classification of the Amphiboles. In: Rosso JJ (ed) Amphiboles: Crystal chemistry, occurrence, and health issues. M Rev Mineral, 67, p 55–88Google Scholar
  27. Hawthorne FC, Oberti R, Harlow GE, Mareach WV, Martin RF, Schumacher JC, Welch MD (2012) IMA Report: Nomenclature of the amphibole supergroup. Am Mineral 97:2031–2048CrossRefGoogle Scholar
  28. Hendrickx M (2009) Naturally occurring asbestos in eastern Australia: a review of geological occurrence, disturbance and mesothelioma risk. Environ Geol 57:909–926CrossRefGoogle Scholar
  29. Italia Decreto Legislativo 25 luglio 2006, n. 257. Attuazione della direttiva 2003/18/CE relativa alla protezione dei lavoratori dai rischi derivanti dall’esposizione all’amianto durante il lavoro. Gazzetta Ufficiale n. 211, 11 settembre 2006Google Scholar
  30. Kane AB, Boffetta P, Saracci R, Wilbourn JD, eds (1996) Mechanisms of fibre carcinogenesis. Lyon: International Agency for Research on Cancer, WHO. IARC Sci Publ 140.
  31. Kelsey KT, Yano E, Liber HL, Little JB (1986) The in vitro genetic effects of fibrous erionite and crocidolite asbestos. Br J Cancer 54:107–114CrossRefGoogle Scholar
  32. Klein C, Hurlbut CS Jr (1985) Manual of mineralogy (after James D. Dana), 20th edn. Wiley, New YorkGoogle Scholar
  33. Klein C, Hurlbut CS Jr (1993) Manual of mineralogy (after James D. Dana), 21st edn. Wiley, New YorkGoogle Scholar
  34. Loomis D, Dement J, Richardson D, Wolf S (2010) Asbestos fibre dimensions and lung cancer mortality among workers exposed to chrysotile. Occup Environ Med 67:580–584CrossRefGoogle Scholar
  35. Lupulescu MV, Rakovan J, Robinson GW, Hughes JM (2005) Fluoropargasite, a new member of the Group 2, calcic amphiboles, from Edenville, Orange County, New York. Can Mineral 43:1423–1428CrossRefGoogle Scholar
  36. Maxim LD, McConnel EE (2005) A review of toxicology and epidemiology of wollastonite. Inhal Toxicol 17:451–466CrossRefGoogle Scholar
  37. Meeker GP, Bern AM, Brownfield IK (2003) The composition and morphology of amphiboles from the Rainy Creek complex, near Libby, Montana. Am Mineral 88:1955–1969CrossRefGoogle Scholar
  38. Menditti I, Ghiara MR, Rossi M, Capitelli F, Petti C (2011) Potentially contaminated sites at Somma-Vesuvius volcanic complex. Geomed 4th International Conference on Medical Geology, Bari, Italy, Session ET11 pp 218Google Scholar
  39. Metintas M, Hillerdal G, Metintas S (1999) Malignant mesothelioma due to environmental exposure to erionite: Follow-up of a Turkish emigrant cohort. Eur Respir J 13:523–526CrossRefGoogle Scholar
  40. National Institute for Occupational Safety and Health (2003) Method 7400. Asbestos and other fibers by PCM. Issue 2 (8/15/94). In NIOSH Manual of Analytical Methods, 4th ed. Cincinnati, Ohio, DHSS (NIOSH). Pub. No. 2003–154., accessed July, 11, 2010
  41. National Institute for Occupational Safety and Health (2010) Draft NIOSH current intelligence bulletin. Asbestos fibers and other elongate mineral particles: State of the science and roadmap for research, Version 4. Revised draft document for public review and comment. NIOSH Docket Number NIOSH 099-C., accessed August 9, 2010
  42. Nayebzadeh A, Case BW, Masse J, Dufresne A (2006) Mineralogical and exposure determinants of pulmonary fibrosis among Quebec chrysotile miners and millers. Int Arch Occup Environ Health 79:227–236CrossRefGoogle Scholar
  43. NOHSC (2005) Code of practice for the management and control of asbestos in workplaces: NOHSC:2018(2005). Canberra National Occupational Health and Safety Committee, Australian Government Publishing ServiceGoogle Scholar
  44. Paoletti L, Batisti D, Bruno C et al (2000) Unusually high incidence of malignant Pleural Mesothelioma in a town of Eastern Sicily: An epidemiological and environmental study. Arch Environ Health 55:392–398CrossRefGoogle Scholar
  45. Pouchou JL, Pichoir F (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. In: Heinrich KFJ, Newbury DE (eds) Electron probe quantitation. Plenum Press, New York, pp 31–75CrossRefGoogle Scholar
  46. Russo M, Della Ventura G, Campostrini I, Preite D (2009) Nuove specie minerali al Monte Somma: I. Fluoro-Edenite. Micro 173–174 (ISSN 1724–7438)Google Scholar
  47. Santacroce R, Sbrana A (2003) Geological map of Vesuvius,1:15.000 scale. Selca, FirenzeGoogle Scholar
  48. Simonato L, Baris R, Saracci R, Skidmore J, Winkelmann R (1989) Relation of environmental exposure to erionite fibres to risk of respiratory cancer. IARC Sci Publ 90:398–405Google Scholar
  49. United States Department of Labor (1975) Occupational exposure to asbestos. Fed. Reg. 40:47652–47665. U.S. Geological Survey, U.S. Department of Labor. 2003. Asbestos. In Mineral commodity summaries 2003. US Government Printing Office, Washington, DC, p 28–29Google Scholar
  50. Ventura G, Vilardo G, Bronzino G, Gabriele G, Nappi R, Terranova C (2005) Geomorphological map of the Somma-Vesuvius volcanic complex (Italy). J Maps 1(1):30–37. doi: 10.4113/jom.2005.8 CrossRefGoogle Scholar
  51. Whitehouse AC, Bradford-Black C, Heppe MS, Ruckdeschel J, Levin SM (2008) Environmental exposure to Libby asbestos and mesotheliomas. Am J Ind Med 51:877–880CrossRefGoogle Scholar
  52. Wylie AG, Verkouteren JR (2000) Amphibole asbestos from Libby, Montana: Aspects of nomenclature. Am Mineral 85:1540–1542CrossRefGoogle Scholar
  53. Zoltai T (1978) History of asbestos-related mineralogical terminology: National Bureau of Standards Special Publication 506:1–18Google Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  1. 1.Real Museo Mineralogico di NapoliUniversità di Napoli Federico IINaplesItaly
  2. 2.Dipartimento di Scienze della Terra, dell’Ambiente e delle RisorseUniversità di Napoli Federico IINaplesItaly
  3. 3.Dipartimento di GeoscienzeUniversità di PadovaPadovaItaly
  4. 4.Istituto di Cristallografia - CNRRomeItaly

Personalised recommendations