Petrogenesis of Mesoproterozoic lamproite dykes from the Garledinne (Banganapalle) cluster, south-western Cuddapah Basin, southern India

Abstract

We report mineral chemistry and whole-rock major and trace-element geochemistry for a recent find of Mesoproterozoic (~1.4 Ga) lamproites from the Garledinne (Banganapalle) cluster, south-western part of the Paleo-Mesoproterozoic Cuddapah Basin, southern India. The Garledinne lamproites occur as WNW–ESE-trending dykes that have undergone varying degree of pervasive silicification and carbonate alteration. Nevertheless, their overall texture and relict mineralogy remain intact and provide important insights into the nature of their magmas. The lamproite dykes have porphyritic to weakly porphyritic textures comprising pseudomorphed olivine macrocrysts and microphenocrysts, titanian phlogopite microphenocrysts, spinel having a compositional range from chromite to rarely magnesiochromite, Sr-rich apatite and niobian rutile. The Garledinne and other Cuddapah Basin lamproites (Chelima and Zangamarajupalle) collectively lack sanidine, clinopyroxene, potassic richterite, and titanite and are thus mineralogically distinct from the nearby Mesoproterozoic lamproites (Krishna and Ramadugu) in the Eastern Dharwar Craton, southern India. The strong correlation between various major and trace elements coupled with high abundances of incompatible and compatible trace elements imply that alteration and crustal contamination have had a limited effect on the whole-rock geochemistry (apart from K2O and CaO) of the Garledinne lamproites and that olivine fractionation played an important role in their evolution. The Garledinne lamproites represent small-degree partial melts derived from a refractory (previously melt extracted) peridotitic mantle source that was subsequently metasomatised (enriched) by carbonate–rich fluids/melts within the garnet stability field. The involvement of multiple reservoirs (sub-continental lithospheric mantle and asthenosphere) has been inferred in their genesis. The emplacement of the Garledinne lamproites is linked to extensional events, across the various Indian cratons, related to the break-up of the Proterozoic supercontinent of Columbia.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Akal C (2008) K-richterite-olivine-phlogopite-diopside-sanidine lamproite from the Afyon volcanic province, Turkey. Geol Mag 145:570–585

    Article  Google Scholar 

  2. Altherr R, Meyer HP, Holl A, Volker F, Alibert C, McCulloch MT, Majer V (2004) Geochemical and Sr-Nd-Pb isotopic characteristics of Late Cenozoic leucite lamproites from the East European Alpine belt. Contrib Mineral Petrol 147:58–73

    Article  Google Scholar 

  3. Anand M, Gibson SA, Subbarao KV, Kelley SP, Dickin AP (2003) Early Proterozoic melt generation processes beneath the intracratonic Cuddapah Basin, southern India. J Petrol 44:2139–2171

    Article  Google Scholar 

  4. Avanzinelli R, Lustrino M, Mattei M, Melluso L, Conticelli S (2009) Potassic and ultrapotassic magmatism in the circum-Tyrrhenian region: significance of carbonated pelitic vs. Pelitic sediment recycling at destructive plate margins. Lithos 113:213–227

    Article  Google Scholar 

  5. Barnes SJ, Roeder PL (2001) The range of spinel compositions in terrestrial mafic and ultramafic rocks. J Petrol 42:2279–2302

    Article  Google Scholar 

  6. Basu A, Bickford ME (2013) Contributions of zircon U-Pb geochronology to understanding the volcanic and sedimentary history of some Purāna basins, India. J Asian Earth Sci 91:252–262

    Article  Google Scholar 

  7. Beard AD, Downes H, Hegner E, Sablukov SM, Vetrin VR, Balogh K (1998) Mineralogy and geochemistry of Devonian ultramafic minor intrusions of the southern Kola peninsula, Russia: implications for the petrogenesis of kimberlites and melilitites. Contrib Mineral Petrol 130:288–303

    Article  Google Scholar 

  8. Beard AD, Downes H, Hegner E, Sablukov SM (2000) Geochemistry and mineralogy of kimberlites from the Argkhangelsk Region, NW Russia: evidence for transitional kimberlite magma types. Lithos 51:47–73

    Article  Google Scholar 

  9. Beard AD, Hownes H, Mason PRD, Vetrin VR (2007) Depletion and enrichment processes in the lithospheric mantle beneath the Kola peninsula (Russia): evidence from spinel lherzolite and wehrilite xenoliths. Lithos 94:1–24

    Article  Google Scholar 

  10. Becker M, Le Roex AP (2006) Geochemistry of south African on- and off-craton group I and II kimberlites: petrogenesis and source region evaluation. J Petrol 47:673–703

    Article  Google Scholar 

  11. Bergman SC (1987) Lamproites and other K-rich igneous rocks: review of their occurrence, mineralogy and geochemistry. Geol Soc Lond Spec Publ 30:103–190

    Article  Google Scholar 

  12. Bhattacharji S, Singh RN (1984) Thermomechanical structure of the southern part of the Indian shield and its relevance to Precambrian basin evolution. Tectonophysics 105:103–120

    Article  Google Scholar 

  13. Bickford ME, Saha D, Schieber S, Kamenov G, Russell A, Basu A (2013) New U-Pb ages of zircons in the Owk Shale (Kurnool Group) with reflections on Proterozoic procellanites in India. J Geol Soc India 82:207–217

    Article  Google Scholar 

  14. Birkett TC (2008) First-row transition elements, Y and Ga in kimberlite and lamproite: applications to diamond prospectivity and petrogenesis. Can Mineral 46:1269–1282

    Article  Google Scholar 

  15. Carlier G, Lorand JP (2003) Petrogenesis of a zirconolite-bearing Mediterranean-type lamproite from the Peruvian Altiplano (Andean Cordillera). Lithos 104:15–35

    Article  Google Scholar 

  16. Chakrabarti R, Basu AR, Paul DK (2007) Nd-Hf-Sr-Pb isotopes and trace element geochemistry of Proterozoic lamproites from southern India: subducted komatiite in the source. Chem Geol 236:291–302

    Article  Google Scholar 

  17. Chalapathi Rao NV (2005) A petrological and geochemical reappraisal of the mesoproterozoic diamondiferous majhgawan pipe of central India: evidence for transitional kimberlite- orangeite (Group- II kimberlite) - lamproite rock type. Mineral Petrol 84:69–106

    Article  Google Scholar 

  18. Chalapathi Rao NV (2007) Chelima dykes, Cuddapah basin, southern India: a review of the age, petrology, geochemistry and petrogenesis of World’s oldest lamproites. J Geol Soc India 69:523–538

    Google Scholar 

  19. Chalapathi Rao NV (2011) Sr-rich apatite and Nb-rutile from the Chelima lamproite dykes, Cuddapah basin, southern India and their petrological significance. Curr Sci 100:1207–1210

    Google Scholar 

  20. Chalapathi Rao NV, Srivastava RK (2009) Petrology and geochemistry of diamondiferous Mesoproterozoic kimberlites from Wajrakarur kimberlite field, Eastern Dharwar Craton, Southern India: genesis and constraints on mantle source regions. Contrib Mineral Petrol 157:245–265

    Article  Google Scholar 

  21. Chalapathi Rao NV, Miller JA, Pyle DM, Madhavan V (1996) New Proterozoic K-Ar ages for some kimberlites and lamproites from the Cuddapah Basin and Dharwar craton, southern India. Precambrian Res 79:363–369

    Article  Google Scholar 

  22. Chalapathi Rao NV, Gibson SA, Pyle DM, Dickin AP (1998) Contrasting isotopic mantle sources for Proterozoic lamproites and kimberlites from the Cuddapah Basin and Eastern Dharwar craton: Implication for Proterozoic mantle heterogeneity beneath southern India. J Geol Soc India 52:683–694

    Google Scholar 

  23. Chalapathi Rao NV, Miller JA, Gibson SA, Pyle DM, Madhavan V (1999) Precise 40Ar/39Ar dating of Kotakonda kimberlite and Chelima lamproite, India: implication to the timing of mafic dyke swarm activity in the Eastern Dhawar craton. J Geol Soc India 53:425–432

    Google Scholar 

  24. Chalapathi Rao NV, Gibson SA, Pyle DM, Dickin AP (2004) Petrogenesis of Proterozoic lamproites and kimberlites from the Cuddapah basin and Dharwar cratons, southern India. J Petrol 45:907–948

    Article  Google Scholar 

  25. Chalapathi Rao NV, Kamde G, Kale HG, Dongre A (2010) Mesoproterozoic lamproites from the Krishna Valley, Eastern Dharwar craton, southern India: Petrogenesis and diamond prospectivity. Precambrian Res 177:103–130

    Article  Google Scholar 

  26. Chalapathi Rao NV, Wu FY, Srinivas M (2012) Mesoproterozoic emplacement and enriched mantle derivation of the Racherla alkali syenite, Palaeo-Mesoproterozoic Cuddapah basin, southern India: Insights from in situ Sr-Nd isotopic analysis on apatite. Geol Soc Lond Spec Publ 365:185–195

    Article  Google Scholar 

  27. Chalapathi Rao NV, Wu FY, Mitchell RH, Li Q, Lehmann B (2013a) Mesoproterozoic U–Pb ages, trace element and Sr–Nd isotopic composition of perovskite from kimberlites of the Eastern Dharwar craton, southern India: distinct mantle sources and a widespread 1.1 Ga tectonomagmatic event. Chem Geol 353:48–64

    Article  Google Scholar 

  28. Chalapathi Rao NV, Creaser RA, Lehmann B (2013b) Re-Os isotope study of Indian kimberlites and lamproites: implications for their mantle source regions and cratonic evolution. Chem Geol 353:36–47

    Article  Google Scholar 

  29. Chalapathi Rao NV, Kumar A, Sahoo S, Dongre A, Talukdar D (2014a) Petrology and petrogenesis of Mesoproterozoic lamproites from the Ramadugu field, NW margin of the Cuddapah basin, eastern Dharwar craton, southern India. Lithos 196–197:150–168

    Article  Google Scholar 

  30. Chalapathi Rao NV, Srivastava RK, Sinha AK, Ravikant V (2014b) Petrogenesis of Kerguelen-plume linked ultrapotassic intrusives from the Gondwana sedimentary basins, Damodar valley, eastern India. Earth Sci Rev 136:96–120

    Article  Google Scholar 

  31. Chatterjee N, Bhattacharjee S (1998) Formation of tholeiitic intrusives in and around Cuddapah basin, south India and their Gondwana counterparts in East Antarctica and compositional variation in their mantle sources. Neues Jahrb Miner Abh 174:79–102

    Google Scholar 

  32. Chaudhuri AK, Saha D, Deb GK, Deb SP, Mukherjee MK, Ghosh G (2002) The Purana basins of southern cratonic province of India- a case for Mesoproterozoic fossil rifts. Gondwana Res 5:23–33

    Article  Google Scholar 

  33. Chetty TRK (2011) Tectonics of Proterozoic Cuddapah basin, Southern India: a conceptual model. J Geol Soc India 78:446–456

    Article  Google Scholar 

  34. Coban H, Flower MFJ (2006) Mineral phase compositions in silica-undersaturated ‘leucite’ lamproites from the Bucak area, Isparta, SW Turkey. Lithos 389:275–299

    Article  Google Scholar 

  35. Coe N, Le Roex A, Gurney JJ, Pearson GD, Nowell G (2008) Petrogenesis of Swartruggens and Star Group II kimberlite dyke swarms, South Africa: constraints from whole rock geochemistry. Contrib Mineral Petrol 156:627–652

    Article  Google Scholar 

  36. Collins AS, Patranabis-Deb S, Alexander E, Bertram CN, Falster GM, Gore RJ, Mackintosh J, Dhang PC, Saha D, Payne JL, Jourdan F, Back’e G, Halverson GP, Wade BP (2014) Detrital mineral age, radiogenic isotopic stratigraphy and tectonic significance of the Cuddapah basin. India Gondwana Res. doi:10.1016/j.gr.2014.10.013

    Google Scholar 

  37. Coltorti M, Bonadiman C, Hinton RW, Siena F, Upton BGJ (1999) Carbonatite metasomatism of the oceanic upper mantle: evidence from clinopyroxenes and glasses in ultramafic xenoliths of Grande Comore, Indian Ocean. J Petrol 40:133–165

    Article  Google Scholar 

  38. Coulson AL (1933) Barytes in ceded districts of madras presidency, with notes on its occurrence in other parts of India. Mem Geol Surv India 64(Part 1):114–115

    Google Scholar 

  39. Dasgupta R, Hirschmann MM, McDonough WF, Spiegelman M, Withers AC (2009) Trace element partitioning between garnet lherzolite and carbonatite at 6.6 and 8.6 GPa with applications to the geochemistry of mantle and mantle-derived melts. Chem Geol 262:57–77

    Article  Google Scholar 

  40. Davies GR, Stolz AZ, Mahotkin IL, Mowell GM, Pearson DG (2006) Trace element and Sr-Pb-Nd-Hf evidence for ancient, fluid-dominated enrichment of the source of Aldan shield lamproites. J Petrol 47:1119–1146

    Article  Google Scholar 

  41. Deb M, Pal T (2014) Mineral potential of Proterozoic intra-cratonic basins in India. Geol Soc Lond Mem 42:309–325

    Google Scholar 

  42. Drury SA (1984) A Proterozoic intracratonic basin, dyke swarms and thermal evolution in South India. J Geol Soc India 25:437–444

    Google Scholar 

  43. Edgar AD, Vukadinovic D (1992) Implications of experimental petrology to the evolution of ultrapotassic rocks. Lithos 28:205–220

    Article  Google Scholar 

  44. Ersoy YE, Palmer MR, Uysal I, Gundogan I (2014) Geochemistry and petrology of the Early Miocene lamproites and related volcanic rocks in the Thrace Basin, NW Anatolia. J Volcanol Geothem Res 283:143–158

    Article  Google Scholar 

  45. Evenssen NM, Hamilton PJ, O’Nions RK (1978) Rare earth abundances in chondritic meteorites. Geochim Cosmochim Acta 42:1199–1212

    Article  Google Scholar 

  46. Foley SF (1992) Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas. Lithos 28:435–438

    Article  Google Scholar 

  47. Foley SF (1993) An experimental study of olivine lamproite: first results from the diamond stability field. Geochim Cosmochim Acta 57:483–489

    Article  Google Scholar 

  48. Foley SF, Venturelli G, Green DH, Toscani L (1987) The ultra-potassic rocks: characteristics, classification and constraints for petrogenetic models. Earth Sci Rev 24:81–134

    Article  Google Scholar 

  49. Foley SF, Link K, Tiberindwa JV, Barifaijo E (2012) Patterns and origins of igneous activity around the Tanzanian craton. J Afr Earth Sci 62:1–18

    Article  Google Scholar 

  50. French JE, Heaman LM, Chacko T, Srivastava RK (2007) 1891–1883 Ma Southern Bastar-Cuddapah mafic igneous events, India: a newly recognised large igneous province. Precambrian Res 160:308–322

    Article  Google Scholar 

  51. Fritschle T, Prelević D, Foley SF, Jacob DE (2013) Petrological characterization of the mantle source of Mediterranean lamproites: indications from major and trace elements of phlogopite. Chem Geol 353:267–279

    Article  Google Scholar 

  52. Gale GH, Dabek LB, Fedikow MAF (1997) The application of rare earth element analyses in the exploration for volcanogenic massive sulfide type deposits. Explor Min Geol 6:233–252

    Google Scholar 

  53. Garza AO, Dostal J, Keppie JD, Moreno FAP (2013) Mid-Tertiary (25–21 Ma) lamprophyres in NW Mexico derived from subduction-modified subcontinental lithospheric mantle in an extensional backarc environment following steepening of the Benioff zone. Tectonophys 590:59–71

    Article  Google Scholar 

  54. Geological Survey of India (2011) Detailed information dossier on diamond in India. 136p

  55. Gibson SA, Thompson RN, Leonardos OH, Dickin AP, Mitchell JG (1995) The Late Cretaceous impact of the Trindade mantle plume: evidence from large-volume, mafic, potassic magmatism in SE Brazil. J Petrol 36:189–229

    Article  Google Scholar 

  56. Gibson SA, Malarkey J, Day J (2008) Melt depletion and enrichment beneath the western Kaapvaal Craton: evidence from Finsch peridotite xenoliths. J Petrol 49:1817–1852

    Article  Google Scholar 

  57. Gudfinnsson GH, Presnall DC (2005) Continuous gradations among primary carbonatitic, kimberlitic, melilititic, basaltic, picritic and komatiitic melts in equilibrium with garnet lherzolite at 3–8 GPa. J Petrol 46:1645–1659

    Article  Google Scholar 

  58. Holland TH (1907) Imperial gazetteer of India. 1:50–103

  59. Ionov DA, Bodinier JL, Mukasa SB, Zanetti A (2002) Mechanisms and sources of mantle metasomatism: major and trace element compositions of peridotite xenoliths from Spitsbergen in the context of numerical modelling. J Petrol 43:2219–2259

    Article  Google Scholar 

  60. Jelsma H, Barnett W, Richards S, Lister G (2009) Tectonic setting of kimberlites. Lithos 112:155–165

    Article  Google Scholar 

  61. Joy S, Jelsma HA, Preston RF, Kota S (2012) Geology and diamond provenance of the Proterozoic Banganapalle conglomerates, Kurnool Group, India. Geol Soc Lond Spec Publ 365:197–218

    Article  Google Scholar 

  62. King W (1872) The Kadapah and Karnul formations in the Madras presidency. Mem Geol Surv India 8:244

    Google Scholar 

  63. Kirchenbaur M, Munker C, Schuth S, Garbe-Schonberg D, Marchev P (2012) Tectonomagmatic constraints on the sources of eastern Mediterranean K-rich lavas. J Petrol 53:27–65

    Article  Google Scholar 

  64. Konzett J, Sweeney RJ, Thompson AB, Ulmer P (1997) Potassium amphibole stability in the upper mantle: an experimental study in a peralkaline KNCMASH system to 8.5 GPa. J Petrol 38:537–568

    Article  Google Scholar 

  65. Krishna Brahmam N, Dutt NVBS (1992) A meteoritic impact theory for the initiation of the Cuddapah (Proterozoic) basin of India. Bull Indian Geol Ass 25:43–60

  66. Kullerud K, Zozulya D, Bergh SG, Hansen H, Ravna EJK (2011) Geochemistry and tectonic setting of a lamproite dyke in Kvaloya, North Norway. Lithos 126:278–289

    Article  Google Scholar 

  67. Kumar A, Gopalan K, Rao KRP, Nayak SS (2001) Rb-Sr ages of kimberlites and lamproites from Eastern Dharwar craton, South India. J Geol Soc India 58:135–142

    Google Scholar 

  68. Kumar KV, Frost CD, Frost BR, Chamberlain BR (2007) The Chimakurthi, Errakonda, and Uppalapadu plutons, Eastern Ghats belt, India: an unusual association of tholeiitic and alkaline magmatism. Lithos 97:30–57

    Article  Google Scholar 

  69. Le Roex AP, Bell DR, Davis P (2003) Petrogenesis of Group I kimberlites from Kimberley, South Africa: evidence from bulk rock geochemistry. J Petrol 44:2261–2286

    Article  Google Scholar 

  70. Lehmann B, Mainkar D, Belyatsky B (2006) The Tokapal crater-facies kimberlite system, Chattisgarh, India: reconnaissance petrography and geochemistry. J Geol Soc India 68:9–18

    Google Scholar 

  71. Lehmann B, Storey C, Mainkar D, Jeffries T (2007) In-situ U-Pb dating of titanite in the Tokapal-Bejripadar kimberlite system, Central India. J Geol Soc India 69:553–556

    Google Scholar 

  72. Madhavan V, Mallikharjuna Rao J, Srinivas M, Natarajan R, Sayeed A (1994) Petrology and petrogenesis of syenites from the Cuddapah basin, Andhra Pradesh. J Geol Soc India 43:225–237

    Google Scholar 

  73. Mall DM, Pandey OP, Chandrakala K, Reddy PR (2008) Imprints of a Proterozoic tectonothermal anomaly below the 1.1 Ga kimberlitic province of the Southwest Cuddapah basin, Dharwar craton (South India). Geophys J Int 172:422–438

    Article  Google Scholar 

  74. Mallikharjuna Rao J, Bhattacharji S, Rao MN, Wampler JM (2007) Potassium-argon ages and geochemical characters of some basic igneous rocks of Cuddapah basin. J Geol Soc India 69:161–170

    Google Scholar 

  75. Masun K, Sthapak AV, Singh A, Vaidya A, Krishna C (2009) Exploration history and geology of the diamondiferous ultramafic Saptarshi intrusions, Madhya Pradesh, India. Lithos 112:142–154

    Article  Google Scholar 

  76. McKenzie D (1985) Extraction of the magma from crust and the mantle. Earth Planet Sci Lett 74:81–91

    Article  Google Scholar 

  77. McKenzie D (1989) Some remarks on the movement of small melt fractions in the mantle. Earth Planet Sci Lett 95:53–72

    Article  Google Scholar 

  78. Meert JG (2012) What’s in a name? The Columbia (Palaeopangea/Nuna) Supercontinent. Gondwana Res 21:987–993

    Article  Google Scholar 

  79. Mirnejad H, Bell K (2006) Origin and source evolution of the Leucite Hills lamproites: evidence from Sr-Nd-Pb-O isotopic compositions. J Petrol 47:2463–2489

    Article  Google Scholar 

  80. Mitchell RH (1995) Kimberlites, orangeites and related rocks. Plenum Press, New York

    Book  Google Scholar 

  81. Mitchell RH (2006) Potassic magmas derived from metasomatised lithospheric mantle: nomenclature and relevance to exploration for diamond-bearing rocks. J Geol Soc India 67:317–327

    Google Scholar 

  82. Mitchell RH, Bergman SC (1991) Petrology of lamproites. Plenum Press

  83. Mitchell RH, Edgar AD (2002) Melting experiments on SiO2-rich lamproites to 6.4 GPa and their bearing on the sources of lamproite magmas. Mineral Petrol 74:115–128

    Article  Google Scholar 

  84. Mitchell RH, Fareeduddin (2009) Mineralogy of peralkaline lamproites from the Raniganj Coalfield, India. Mineral Mag 73:457–477

    Article  Google Scholar 

  85. Mohanty S (2011) Palaeoproterozoic assembly of the Napier Complex, Southern India and Western Australia: implications for the evolution of the Cuddapah basin. Gondwana Res 20:344–361

    Article  Google Scholar 

  86. Murphy DT, Collerson KD, Kamber BS (2002) Lamproites from Gaussberg, Antarctica: possible transition zone melts of Archaean subducted sediments. J Petrol 43:981–1001

    Article  Google Scholar 

  87. Nagaraja Rao BK, Rajurkar ST, Ramalingaswamy G, Ravindra Babu B (1987) Stratigraphy, structure and evolution of the Cuddapah Basin. Geol Soc India Mem 6:33–86

    Google Scholar 

  88. Naqvi SM, Rogers JJW (1987) Precambrian geology of India. Oxford University Press

  89. Nelson DR (1992) Isotopic characteristics of potassic rocks—evidence for the involvement of subducted sediments in the magma. Lithos 28:403–420

    Article  Google Scholar 

  90. Osborne I, Sherlock S, Anand M, Argles T (2011) New Ar-Ar ages of southern Indian kimberlites and a lamproite and their geochemical evolution. Precambrian Res 189:91–103

    Article  Google Scholar 

  91. Palme H, O’Neill HSC (2003) Cosmochemical estimates of mantle composition. In: Holland H, Turekian KK, (eds) Treatise on geochemistry 2: 1–38

  92. Paton C, Hergt JM, Woodhead JD, Phillips D, Shee SR (2009) Identifying the asthenospheric component of kimberlite magmas from the Dharwar craton, India. Lithos 112:296–310

    Article  Google Scholar 

  93. Patranabis-Deb S, Saha D, Tripathy V (2012) Basin stratigraphy, sea-level fluctuations and their global connections: evidence from the Proterozoic Cuddapah Basin. Geol J 47:263–283

    Article  Google Scholar 

  94. Paul DK, Crocket JH, Reddy TAK, Pant NC (2007) Petrology and geochemistry including Platinum Group element abundances of the Mesoproterozoic ultramafic (lamproite) rocks of Krishna district, southern India: implications for source rock characteristics and ptrogenesis. J Geol Soc Indi 69:577–596

    Google Scholar 

  95. Pe-Piper G, Zhang Y, Piper DJW, Prelevic D (2014) Relationship of Mediterranean type lamproites to large shoshonite volcanoes, Miocene of Lesbos, NE Aegean Sea. Lithos 184–187:281–299

    Article  Google Scholar 

  96. Prelević D, Akal C, Foley SF, Romer RL, Stracke A, Bogaard PVD (2012) Ultrapotassic mafic rocks as geochemical proxies for post-collisional dynamics of orogenic lithospheric mantle: the case of Southwestern Anatolia, Turkey. J Petrol 55:1019–1055

    Article  Google Scholar 

  97. Priestly K, McKenzie D (2006) The thermal structure of the lithosphere from shear wave velocities. Earth Planet Sci Lett 244:285–301

    Article  Google Scholar 

  98. Radhakrishna BP (2007) Diamond exploration in India: retrospect and prospect. J Geol Soc of India 69:419–442

    Google Scholar 

  99. Reddy NS (1988) Pillowed spilitic lavas from the Tadpatri formation of the Cuddapah Basin. J Geol Soc of India 32:65–67

    Google Scholar 

  100. Reider M, Cavazzini D, Yakonov YSD, Frank-Kamenetskii VA, Gottardi G, Guggenheim S, PV K, Muller G, Neiva AMR, Radoslovich EW, Robert JL, Sassi FP, Takeda H, Weiss Z, Wones DR (1998) Nomenclature of micas. Can Mineral 36:905–912

    Google Scholar 

  101. Rogers JJW, Santosh M (2009) Tectonics and surface effects of the supercontinent Columbia. Gondwana Res 15:373–380

    Article  Google Scholar 

  102. Saha D, Tripathy V (2012) Tuff beds in Kurnool subbasin, southern India and implications for felsic volcanism in Proterozoic intracratonic basins. Geosci Front 3:429–444

    Article  Google Scholar 

  103. Sahu N, Gupta T, Patel SC, Khuntia DBK, Behera D, Pande K, Das SK (2013) Petrology of lamproites from the Nuapada lamproite field, Bastar craton, India. In: Pearson DG et al (ED) Proceedings of the X International Kimberlite Conference, Bangalore. J Geol Soc India Spec 1: 137–165

  104. Sastry CA, Rama Rao G, Prasad GJS, Reddy VA (2005) Electron micro analysis of indicator minerals from kimberlites of Andhra Pradesh and Karnataka-basic data. Geol Surv India Bull Ser C6:282

    Google Scholar 

  105. Sato K, Katsura T, Ito E (1997) Phase relations of natural phlogopite with and without enstatite up to 8 GPa: implication for mantle metasomatism. Earth Planet Sci Lett 146:511–526

    Article  Google Scholar 

  106. Sen SN, Narasimha Rao H (1971) Chelima dykes—a source for diamonds in Kurnool district, A.P. Geol Surv India Misc Publ 19:92–94

    Google Scholar 

  107. Sesha Sai VV (2014) Pyroclastic volcanism in Papaghni sub-basin, Andhra Pradesh: significant Paleoproterozoic tectonomagmatic event in SW Part of the Cuddapah basin, Eastern Dharwar Craton. J Geol Soc India 83:355–362

    Article  Google Scholar 

  108. Sheppard S, Taylor WR (1992) Barium- and LREE-rich, olivine-mica-lamprophyres with affinities to lamproites, Mt. Bundey, Northern Territory, Australia. Lithos 28:303–325

    Article  Google Scholar 

  109. Singh AP, Mishra DC (2002) Tectonosedimentary evolution of Cuddapah Basin and Eastern Ghats Mobile belt (India) as Proterozoic collision: gravity, seismic and geodynamic constraints. J Geodyn 33:249–267

    Article  Google Scholar 

  110. Srikantia SV (1984) Kuppalapalle volcanic—a distinct Upper Papaghni volcanic activity in the Cuddapah Basin. J Geol Soc India 25:775–779

    Google Scholar 

  111. Sun Y, Ying J, Zhou X, Shao J, Chu Z, Su B (2014) Geochemistry of ultrapotassic volcanic rocks in Xiaogulihe NE China: implications for the role of ancient subducted sediments. Lithos 208–209:53–66

    Article  Google Scholar 

  112. Tainton KM, McKenzie D (1994) The generation of kimberlites, lamproites and their source rocks. J Petrol 35:787–817

    Article  Google Scholar 

  113. Tappe S, Jenner GA, Foley SF, Heaman L, Besserer D, Kjarsgaard BA, Ryan B (2004) Torngat ultramafic lamprophyres and their relation to the North Atlantic Alkaline Province. Lithos 76:491–518

    Article  Google Scholar 

  114. Tappe S, Foley SF, Kjarsgaard BA, Romer RL, Heaman LM, Stracke A, Jenner GA (2008) Between carbonatite and lamproite - diamondiferous Torngat ultramafic lamprophyres formed by carbonate fusion melting of cratonic MARID type metasomes. Geochim Cosmochim Acta 72:3258–3286

    Article  Google Scholar 

  115. Tappe S, Pearson DG, Nowell GM, Nielsen TFD, Milstead P, Muehlenbachs K (2011) A fresh isotopic look at Greenland kimberlites: cratonic mantle lithosphere imprint on deep source signal. Earth Planet Sci Lett 305:235–248

    Article  Google Scholar 

  116. Tappe S, Pearson DG, Kjarsgaard BA, Nowell G (2013) Mantle transition zone input to kimberlite magmatism near a subduction zone: origin of anomalous Nd-Hf isotope systematics at Lac de Gras, Canada. Earth Planet Sci Lett 371–372:235–25

    Article  Google Scholar 

  117. Torsvik TH, Burke K, Steinberger B, Webb SJ, Ashwal LD (2010) Diamonds sampled by plumes from the core–mantle boundary. Nature 466:352–355

    Article  Google Scholar 

  118. Tripathy V, Saha D (2013) Plate margin paleostress variations and intracontinental deformations in the evolution of the Cuddapah basin through Proterozoic. Precambrian Res 235:107–130

    Article  Google Scholar 

  119. Upadhyay D, Raith MM, Mezger K, Hammerschmidt K (2006) Mesoproterozoic rift-related alkaline magmatism at Elchuru, Prakasam Alkaline Province, SE India. Lithos 89:447–477

    Article  Google Scholar 

  120. Wang B, Chen JL, Xu JF, Wang LQ (2014) Geochemical and Sr–Nd–Pb–Os isotopic compositions of Miocene ultrapotassic rocks in southern Tibet: Petrogenesis and implications for the regional tectonic history. Lithos 208–209:237–250

    Article  Google Scholar 

  121. Weyer S, Munker C, Mezger K (2003) Nb/Ta, Zr/Hf and REE in the depleted mantle: implications for the differentiation history of the crust-mantle system. Earth Planet Sci Lett 205:309–324

    Article  Google Scholar 

  122. Yilmaz K (2010) Origin of anorogenic ‘lamproite-like’ potassic lavas from the Denizli region in Western Anatolia Extensional Province, Turkey. Mineral Petrol 99:219–239

    Article  Google Scholar 

Download references

Acknowledgments

It’s a great pleasure to contribute to this special issue being brought out in honor of the late Professor Rex Prider whose pioneering studies on lamproites are indeed remarkable. In-depth reviews provided by Felix Kaminsky (Vancouver) and Peter Downes (Perth) as well as editorial suggestions by Johann Raith (Leoben) are thankfully acknowledged. Financial assistance from CSIR (At, AK and NC), UGC (SS) and DST (PN) are thankfully acknowledged. NVCR thanks the Head, Dept. of Geology, BHU and AvH Foundation, Germany, for support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. V. Chalapathi Rao.

Additional information

Re-Revised Paper submitted on 19.5.2015 to the Mineralogy and Petrology special issue dedicated to Late Professor Rex Prider

Editorial handling: P. Downes

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rao, N.V.C., Atiullah, Kumar, A. et al. Petrogenesis of Mesoproterozoic lamproite dykes from the Garledinne (Banganapalle) cluster, south-western Cuddapah Basin, southern India. Miner Petrol 110, 247–268 (2016). https://doi.org/10.1007/s00710-015-0388-0

Download citation

Keywords

  • Chromian Spinel
  • Incompatible Trace Element
  • Cuddapah Basin
  • Eastern Dharwar Craton
  • Ultrapotassic Rock