Skip to main content
Log in

Hydrothermal activity during tectonic building of the Variscan orogen recorded by U-Pb systematics of xenotime in the Grès Armoricain formation, Massif Armoricain, France

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

In the Saint-Aubin-des-Châteaux deposit (Massif Armoricain, France), the Ordovician Grès Armoricain sandstones have undergone several fluid-rock interaction events, including diagenetic cementation and orogenic base metal-As-Sb-Au mineralisation. Ironstone layers interbedded in the sandstones contain several generations of spectacular authigenic xenotime overgrowths that formed around detrital zircon grains in response to successive hydrothermal events. Textural and chemical characterisations allow to distinguish three generations of xenotime overgrowths, differing notably in their REE characteristics. In-situ U-Pb data obtained on these xenotime overgrowths show that their U-Pb systematics were largely disturbed by successive hydrothermal events over about 90 Ma between ~ 330 and ~ 420 Ma, a time interval encompassing most phases of the construction of the Variscan orogen in France. The younger dates cluster around ~ 330–340 Ma and likely correspond to the age of the deposition of massive sulphides and base-metals in the Saint-Aubin-des-Châteaux deposits, which is consistent with the structural contexts where they formed. Finally, this study shows that similarly to monazite, another phosphate widely used for U-Pb and Th-Pb dating studies, the U-Pb chronometric system in xenotime appears to be highly sensitive to fluid circulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arenas R, Sánchez Martínez S, Gerdes A, Albert R, Díez Fernández R, Andonaegui P (2014) Re-interpreting the Devonian ophiolites involved in the variscan suture: U-Pb and Lu-Hf zircon data of the moeche ophiolite (Cabo Ortegal Complex, NW Iberia). Int J Earth Sci 103:1385–1402. doi:10.1007/s00531-013-0880-x

  • Ballèvre M, Bosse V, Ducassou C, Pitra P (2009) Palaeozoic history of the Armorican Massif: models for the tectonic evolution of the suture zones. C R Geosci 341:174–201

    Article  Google Scholar 

  • Barrat JA, Zanda B, Moynier F, Bollinger C, Liorzou C, Bayon G (2012) Geochemistry of CI chondrites: major and trace elements, and Cu and Zn isotopes. Geochim Cosmochim Acta 83:79–92

    Article  Google Scholar 

  • Bernard-Griffiths J, Gebauer D, Grünenfelder M, Piboule M (1985) The tonalite belt of Limousin (French Central Massif): U-Pb zircon ages and geotectonic implications. Bull Soc Geol Fr 8:523–529

    Google Scholar 

  • Berthé D, Choukroune P, Jégouzo P (1979) Orthogneiss, mylonite and non-coaxial deformation of granites: the example of the South Armorican Shear Zone. J Struct Geol 1:31–42

    Article  Google Scholar 

  • Bertrand JM, Leterrier J, Cuney M, Brouand M, Stussi M, Delaperrière E, Virlogeux D (2001) Géochronologie U-Pb sur zircons de granitoïdes du Confolentais, du massif de Charroux-Civray (seuil du Poitou) et de Vendée. Géol Fr 1–2:167–189

    Google Scholar 

  • Bosse V, Boulvais P, Gautier P, Tiepolo M, Ruffet G, Devidal JL, Cherneva Z, Gerdjikov I, Paquette JL (2009) Fluid-induced disturbance of the monazite Th–Pb chronometer: in situ dating and element mapping in pegmatites from the Rhodope (Greece, Bulgaria). Chem Geol 261:286–302

    Article  Google Scholar 

  • Chantraine J, Autran A, Cavelier C (1996) Carte géologique de la France. BRGM, Orléans

    Google Scholar 

  • Chauris L, Marcoux E (1994) Metallogeny of Armorican Massif. In: Keppie JD (ed) Pre-Mesozoic geology in France and related area. Springer, Berlin Heidelberg, pp 243–264

    Chapter  Google Scholar 

  • Chauvel JJ (1974) Les minerais de fer de l’Ordovicien inférieur du bassin de Bretagne-Anjou, France. Sedimentology 21:127–147

    Article  Google Scholar 

  • Chauvel JJ, Le Corre C (1971) La transgression paléozoïque et l’Ordovicien inférieur dans la presqu’île de Crozon (Finistère). Mém. BRGM, Orléans, pp 109–117

    Google Scholar 

  • Chauvel JJ, Phan KD (1965) Présence d’apatite strontianifère dans le minerai de fer de l’Ordovicien inférieur de Bretagne. C R Acad Sci Paris 260:2855–2857

    Google Scholar 

  • Choukroune P, Lopez-Munoz M, Ouali J (1983) Cisaillement ductile sud-armoricain et déformations discontinues associées: mise en évidence de la déformation régionale non coaxiale dextre. C R Acad Sci Paris 296:657–660

    Google Scholar 

  • Corti G, Moratti G, Sani F (2005) Relations between surface faulting and granite intrusions in analogue models of strike-slip deformation. J Struct Geol 27:1547–1562

    Article  Google Scholar 

  • Díaz García F, Arenas R, Martínez Catalán JR, González Del Tánago J, Dunning G (1999) Tectonic evolution of the Careón ophiolite (Northwest Spain): a remnant of oceanic lithosphere in the Variscan belt. J Geol 107:587–605

    Article  Google Scholar 

  • Drost K, Wirth R, Košler J, Fonneland Jørgensen H, Ntaflos T (2013) Chemical and structural relations of epitaxial xenotime and zircon substratum in sedimentary and hydrothermal environments: a TEM study. Contrib Mineral Petrol 165:737–756

    Article  Google Scholar 

  • Ducassou C, Ballèvre M, Lardeux H, Robin C (2011) Evidence for pre-orogenic, Early Devonian rifting in the Variscan belt: stratigraphy and structure of the Palaeozoic cover of the Mauges Unit (Upper Allochthon, Armorican massif, France). Int J Earth Sci 100:1451–1476

    Article  Google Scholar 

  • Ducassou C, Poujol M, Ruffet G, Bruguier O, Ballèvre M (2014) Relief variations and erosion of the Variscan belt: detrital geochronology of the Palaeozoic sediments from the Mauges Unit (Armorican Massif, France). J Geol Soc Lond Spec Pub 405:137–167

    Article  Google Scholar 

  • Durand J, Noblet C (1986) Paléocourants dans la formation du grès armoricain: persistance des mécanismes de transport en domaine cratonique. Rev Géol Dyn Géog Phys 27:13–26

    Google Scholar 

  • England GL, Rasmussen B, McNaughton NJ, Fletcher IR, Groves DI, Krapež B (2001) SHRIMP U-Pb ages of diagenetic and hydrothermal xenotime from the Archaean Witwatersrand Supergroup of South Africa. Terra Nova 13:360–367

    Article  Google Scholar 

  • Fletcher IR, Rasmussen B, McNaughton NJ (2000) SHRIMP U-Pb geochronology of authigenic xenotime and its potential for dating sedimentary basins. Aust J Earth Sci 47:845–859

    Article  Google Scholar 

  • Gapais D, Le Corre C (1980) Is the Variscan belt of Brittany a major shear zone? Nature 288:574–576

    Article  Google Scholar 

  • Gloaguen E, Branquet Y, Boulvais P, Moëlo Y, Chauvel JJ, Chiappero PJ, Marcoux E (2007) Palaeozoic oolitic ironstone of the French Armorican Massif: a chemical and structural trap for orogenic base metal-As-Sb-Au mineralisation during Variscan strike-slip deformation. Miner Deposita 42:399–422

    Article  Google Scholar 

  • Gratz R, Heinrich W (1997) Monazite-xenotime thermobarometry: experimental calibration of the miscibility gap in the binary system CePO4-YPO4. Am Mineral 82:772–780

    Google Scholar 

  • Guillocheau F, Rolet M (1982) La sédimentation Paléozoïque Ouest-Armoricaine. Bull Soc Géol Minér Bretagne 14:45–62

    Google Scholar 

  • Gumiaux C, Gapais D, Brun JP, Chantraine J, Ruffet G (2004) Tectonic history of the Variscan Armorican Shear belt (Brittany, France). Geodin Acta 17:289–307

    Article  Google Scholar 

  • Harlov DE, Wirth R, Hetherington CJ (2007) The relative stability of monazite and huttonite at 300–900 °C and 200–1000 MPa: metasomatism and the propagation of metastable mineral phases. Am Mineral 92:1652–1664

    Article  Google Scholar 

  • Harlov DE, Wirth R, Hetherington CJ (2011) Fluid-mediated partial alteration in monazite: the role of coupled dissolution-reprecipitation in element redistribution and mass transfer. Contrib Mineral Petrol 162:329–348

    Article  Google Scholar 

  • Hetherington CJ, Harlov DE (2008) Metasomatic thorite and uraninite inclusions in xenotime and monazite from granitic pegmatites, Hidra anorthosite massif, southwestern Norway: mechanics and fluid chemistry. Am Mineral 93:806–820

    Article  Google Scholar 

  • Hetherington CJ, Jercinovic MJ, Williams ML, Mahan K (2008) Understanding geologic processes with xenotime: composition, chronology, and a protocol for electron probe microanalysis. Chem Geol 254:133–147

    Article  Google Scholar 

  • Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem Geol 211:47–69

    Article  Google Scholar 

  • Jégouzo P (1980) The South Armoricain shear zone. J Struct Geol 2:39–47

    Article  Google Scholar 

  • Joseph P (1982) Le minerai de fer oolithique ordovicien du Massif Armoricain: sédimentologie et paléogéographie. Thesis, Ecole Nationale Supérieure des Mines de Paris, 324 p

    Google Scholar 

  • Klötzli E, Klötzli U, Kosler J (2007) A possible laser ablation xenotime U-Pb age standard: reproducibility and accuracy. Geochim Cosmochim Acta 71:A495

    Google Scholar 

  • Kositcin N, McNaughton NJ, Griffin BJ, Fletcher IR, Groves DI, Rasmussen B (2003) Textural and geochemical discrimination between xenotime of different origin in the Archaean Witwatersrand Basin, South Africa. Geochim Cosmochim Acta 67:709–731

    Article  Google Scholar 

  • Lan ZW, Chen ZQ, Li XH, Li B, Adams D (2013) Hydrothermal origin of the Paleoproterozoic xenotime from the King Leopold Sandstone of the Kimberley group, Kimberley, NW Australia: implications for a ca 1.7 Ga far-field hydrothermal event. Aust J Earth Sci 60:497–508

    Article  Google Scholar 

  • Le Corre C (1978) Approche quantitative des processus synschisteux. L’exemple du segment Hercynien de Bretagne Centrale. Thesis, Université de Rennes I, 382 p

  • Le Corre C, Auvray B, Ballèvre M, Robardet M (1991) Le Massif Armoricain. Sci Géol Bull 44:31–103

    Google Scholar 

  • Lemarchand J, Boulvais P, Gaboriau M, Boiron MC, Tartèse R, Cokkinos M, Bonnet S, Jégouzo P (2012) Giant quartz vein formation and high elevation meteoric fluid infiltration into the South Armorican Shear Zone: geological, fluid inclusion and stable isotope evidence. J Geol Soc Lond 169:17–27

    Article  Google Scholar 

  • Ludwig KR (2008) Isoplot/Ex Version 3.70: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Spec Pub 4, 73 pp.

  • Mathieu R, Zetterström L, Cuney M, Gauthier-Lafaye F, Hidaka H (2001) Alteration of monazite and zircon and lead migration as geochemical tracers of fluid paleocirculations around the Oklo-Okélobondo and Bamgombé natural nuclear reaction zones (Franceville basin, Gabon). Chem Geol 171:147–171

    Article  Google Scholar 

  • Mesto E, Scordari F, Lacalamita M, Schingaro E (2012) Tobelite and NH4+-rich muscovite single crystals from Ordovician Armorican sandstones (Brittany, France): structure and crystal chemistry. Am Mineral 97:1460–1468

    Article  Google Scholar 

  • Moëlo Y, Lasnier B, Palvadeau P, Léone P, Fontan F (2000) La Lulzacite, Sr2Fe2 + (Fe2+, Mg)2Al4(PO4)4(OH)10, un nouveau phosphate de strontium (Saint-Aubin-Des-Chateâux, Loire-Atlantique, France). C R Acad Sci Paris 330:314–324

    Google Scholar 

  • Moëlo Y, Lulzac Y, Rouer O, Palvadeau P, Gloaguen E, Léone P (2002) Scandium mineralogy: pretulite with scandian zircon and xenotime-(Y) within an apatite-rich oolitic ironstone from Saint-Aubin-Des-Châteaux, Armorican Massif, France. Can Mineral 40:1657–1673

    Article  Google Scholar 

  • Moëlo Y, Rouer O, Bouhnik-Le CM (2008) From diagenesis to hydrothermal recrystallisation: polygenic Sr-rich fluorapatite from the oolitic ironstone of Saint-Aubin-des-Châteaux (Armorican Massif, France). Eur J Mineral 20:205–216

    Article  Google Scholar 

  • Müller W, Shelley M, Miller P, Broude S (2009) Initial performance metrics of a new custom-designed ArF excimer LA-ICPMS system coupled to a two-volume laser-ablation cell. J Anal Atom Spec 24:209–214

    Article  Google Scholar 

  • Noblet C (1983) Interprétations des cartes d’isopaques de la Formation du Grès armoricain levées en Bretagne et en Normandie. Géol Fr 2:311–320

    Google Scholar 

  • Pin C, Paquette JL, Santos Zalduegui JF, Gil Ibarguchi JI (2002) Early Devonian supra-subduction zone ophiolite related to incipient collisional processes in the Western Variscan Belt: The Sierra de Careón unit, Ordenes Complex, Galicia. In: Martínez Catalán JR, Hatcher Jr RD, Arenas R, Díaz García F (eds) Variscan-Appalachian Dynamics: The Building of the Late Paleozoic Basement, Geol Soc Am Spec Paper 364, pp 57–71

  • Pin C, Paquette JL, Ábalos B, Santos FJ, Gil Ibarguchi JI (2006) Composite origin of an early Variscan transported suture: Ophiolitic units of the Morais Nappe Complex (north Portugal). Tectonics 25:TC5001, doi: 10.1029/2006TC001971

  • Pitra P, Ballèvre M, Ruffet G (2010) Inverted metamorphic field gradient towards a Variscan suture zone (Champtoceaux Complex, Armorican Massif, France). J Metamorph Geol 28:183–208

    Article  Google Scholar 

  • Poitrasson F, Chenery S, Bland DJ (1996) Contrasted monazite hydrothermal alteration mechanisms and their geochemical implications. Earth Planet Sci Lett 145:79–96

    Article  Google Scholar 

  • Poitrasson F, Chenery S, Shepherd TJ (2000) Electron microprobe and LA-ICP-MS study of monazite hydrothermal alteration: implications for U-Th-Pb geochronology and nuclear ceramics. Geochim Cosmochim Acta 64:3283–3297

    Article  Google Scholar 

  • Poujol M, Boulvais P, Kosler J (2010) In-situ LA-ICP-MS U-Th-Pb dating of metasomatic fluid circulation: evidence of regional-scale albitization in the Pyrénées. J Geol Soc Lond 167:751–767

    Article  Google Scholar 

  • Rasmussen B (1996) Early-diagenetic REE-phosphate minerals (florencite, gorceixite, crandallite and xenotime) in marine sandstones: a major sink for oceanic phosphorus. Am J Sci 296:601–632

    Article  Google Scholar 

  • Rasmussen B (2005) Radiometric dating of sedimentary rocks: the application of diagenetic xenotime geochronology. Earth Sci Rev 68:197–243

    Article  Google Scholar 

  • Rasmussen B, Fletcher IR, Bengtson S, McNaughton NJ (2004) SHRIMP U-Pb dating of diagenetic xenotime in the stirling range formation, Western Australia: 1.8 billion-year minimum age for the Stirling biota. Precambrian Res 133:329–337

    Article  Google Scholar 

  • Rasmussen B, Fletcher IR, Muhling JR (2011) Response of xenotime to prograde metamorphism. Contrib Mineral Petrol 162:1259–1277

    Article  Google Scholar 

  • Roman-Berdiel T, Gapais D, Brun JP (1997) Granite intrusion along strike-slip zones in experiment an nature. Am J Sci 297:651–678

    Article  Google Scholar 

  • Sánchez Martínez S, Arenas R, Gerdes A, Castiñeiras P, Potrel A, Fernández-Suárez J (2011) Isotope geochemistry and revised geochronology of the Purrido Ophiolite (Cabo Ortegal Complex, NW Iberian Massif): Devonian magmatism with mixed sources and involved Mesoproterozoic basement. J Geol Soc Lond 168:733–750

    Article  Google Scholar 

  • Seydoux-Guillaume AM, Paquette JL, Wiedenbeck M, Montel JM, Heinrich W (2002) Experimental resetting of the U-Th-Pb systems in monazite. Chem Geol 191:165–181

    Article  Google Scholar 

  • Seydoux-Guillaume AM, Montel JM, Bingen B, Bosse V, de Parseval P, Paquette JL, Janots E, Wirth R (2012) Low-temperature alteration of monazite: fluid mediated coupled dissolution-precipitation, irradiation damage, and disturbance of the U-Pb and Th-Pb chronometers. Chem Geol 330–331:140–158

    Article  Google Scholar 

  • Stern RA (1997) The GSC sensitive high resolution ion microprobe (SHRIMP): analytical techniques of zircon U-Th-Pb age determinations and performance evaluation. Radiogenic and Isotopic Studies: Report 10. Geological Survey of Canada, Current Research, pp. 1–31

  • Tajčmanová L, Soejono I, Konopásek J, Košler J, Klötzli U (2010) Structural position of high-pressure felsic to intermediate granulites from NE Moldanubian domain (Bohemian Massif). J Geol Soc Lond 167:329–345

    Article  Google Scholar 

  • Tartèse R, Poujol M, Ruffet G, Boulvais P, Yamato P, Košler J (2011a) New U-Pb zircon and 40Ar/39Ar muscovite age constraints on the emplacement of the Lizio syn-tectonic granite (Armorican massif, France). C R Geosci 343:443–453

    Article  Google Scholar 

  • Tartèse R, Ruffet G, Poujol M, Boulvais P, Ireland TR (2011b) Simultaneous resetting of the muscovite K-Ar and monazite U-Pb geochronometers: a story of fluids. Terra Nova 23:390–398

    Article  Google Scholar 

  • Tartèse R, Boulvais P, Poujol M, Chevalier T, Paquette JL, Ireland TR, Deloule E (2012) Mylonites of the South Armorican Shear Zone: Insights for crustal-scale fluid flow and water-rock interaction processes. J Geodyn 56–57:86–107

    Article  Google Scholar 

  • Tera F, Wasserburg GJ (1972) U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth Planet Sci Lett 14:281–304

    Article  Google Scholar 

  • Teufel S, Heinrich W (1997) Partial resetting of the U-Pb isotope system in monazite through hydrothermal experiments: an SEM and U-Pb isotope study. Chem Geol 137:273–281

    Article  Google Scholar 

  • Vallini DA, Rasmussen B, Krapež B, Fletcher IR, McNaughton NJ (2002) Obtaining diagenetic ages from metamorphosed sedimentary rocks: U-Pb dating of unusually coarse xenotime cement in phosphate sandstone. Geology 30:1083–1086

    Article  Google Scholar 

  • Vallini DA, Rasmussen BR, Krapež B, Fletcher IR, McNaughton NJ (2005) Microtextures, geochemistry and geochronology of authigenic xenotime: constraining the cementation history of a Palaeoproterozoic metasedimentary sequence. Sedimentology 52:101–122

    Article  Google Scholar 

  • Vallini DA, Cannon WF, Schulz KJ (2006) Age constraints for Paleoproterozoic glaciation in the Lake Superior Region: detrital zircon and hydrothermal xenotime ages of the Chocolay Group, Marquette Range Supergroup. Can J Earth Sci 43:571–591

    Article  Google Scholar 

  • van Achterbergh E, Ryan CG, Jackson SE, Griffin W (2001) Data reduction software for LA-ICP-MS. In: Sylvester P (ed) Laser Ablation-ICPMS in the Earth Science. Miner. Assoc. Canada, vol. 29, pp. 239–243

  • van Emden B, Thornber MR, Graham J, Lincoln FJ (1997) The incorporation of actinides in monazite and xenotime from placer deposits in Western Australia. Can Mineral 35:95–104

    Google Scholar 

  • Vermeesch P (2012) On the visualisation of detrital age distributions. Chem Geol 312–313:190–194

    Article  Google Scholar 

  • Vigneresse JL, Brun JP (1983) Les leucogranites armoricains. Structures et mise en place des granites hercyniens. Bull Soc Geol Fr 25:357–366

    Article  Google Scholar 

  • Wilby PR, Page AA, Zalasiewicz JA, Milodowski AE, Williams M, Evans JA (2007) Syntectonic monazite in low-grade mudrocks: a potential geochronometer for cleavage formation? J Geol Soc Lond 164:53–56

    Article  Google Scholar 

  • Williams ML, Jercinovic M, Harlov DE, Budzìn B, Hetherington CJ (2011) Resetting monazite ages during fluid-related alteration. Chem Geol 283:218–225

    Article  Google Scholar 

Download references

Acknowledgments

We want to thank the Hervé Granulats Company, and more particularly their quarry manager Bruno Geibig, for facilitating our access to the Saint-Aubin-des-Châteaux quarry. We are also grateful to Olivier Pourret for access to the Secondary Electron Microscope at the LaSalle Institute (Beauvais, France). Franz Kiraly (University of Vienna) is thanked for assistance with microprobe analyses and technical support. The analytical work at the University of Bergen was supported by GACR project P210/12/2114. Finally, we thank Ian Fletcher and an anonymous reviewer for his corrections and suggestions which have substantially improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Tartèse.

Additional information

Editorial handling: Y. Xu

This paper is dedicated to the memory of Jan Košler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1071 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tartèse, R., Poujol, M., Gloaguen, E. et al. Hydrothermal activity during tectonic building of the Variscan orogen recorded by U-Pb systematics of xenotime in the Grès Armoricain formation, Massif Armoricain, France. Miner Petrol 109, 485–500 (2015). https://doi.org/10.1007/s00710-015-0373-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-015-0373-7

Keywords

Navigation